Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Tramadol HCl
Overview
What is Tramadol HCl?
Tramadol hydrochloride tablets are a centrally acting analgesic. The chemical name for tramadol hydrochloride is (±)-2-[(Dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol hydrochloride. Its structural formula is:
Tramadol hydrochloride is a white, bitter, crystalline and odorless powder. It is readily soluble in water and ethanol and has a pKa of 9.41. The n-octanol/water log partition coefficient (logP) is 1.35 at pH 7. Each tablet, for oral administration contains 50 mg of tramadol hydrochloride and is white in color. In addition, each tablet contains the following inactive ingredients: croscarmellose sodium, hypromellose, lactose monohydrate, magnesium stearate, microcrystalline cellulose, polyethylene glycol, polysorbate, pregelatinized starch and titanium dioxide.
What does Tramadol HCl look like?
What are the available doses of Tramadol HCl?
Sorry No records found.
What should I talk to my health care provider before I take Tramadol HCl?
Sorry No records found
How should I use Tramadol HCl?
Tramadol hydrochloride tablets are indicated for the management of moderate to moderately severe pain in adults.
For patients with moderate to moderately severe chronic pain not requiring rapid onset of analgesic effect, the tolerability of tramadol hydrochloride can be improved by initiating therapy with a titration regimen. The total daily dose may be increased by 50 mg as tolerated every 3 days to reach 200 mg/day (50 mg q.i.d.). After titration, tramadol hydrochloride tablets 50 mg to 100 mg can be administered as needed for pain relief every four to six hours,
For the subset of patients for whom rapid onset of analgesic effect is required and for whom the benefits outweigh the risk of discontinuation due to adverse events associated with higher initial doses, tramadol hydrochloride tablets 50 mg to 100 mg can be administered as needed for pain relief every four to six hours,
What interacts with Tramadol HCl?
Tramadol hydrochloride should not be administered to patients who have previously demonstrated hypersensitivity to tramadol, any other component of this product or opioids. Tramadol hydrochloride is contraindicated in any situation where opioids are contraindicated, including acute intoxication with any of the following: alcohol, hypnotics, narcotics, centrally acting analgesics, opioids or psychotropic drugs. Tramadol hydrochloride may worsen central nervous system and respiratory depression in these patients.
What are the warnings of Tramadol HCl?
Seizure Risk
- Array
- Array
- Array
- Array
- Array
- Array
Seizures have been reported in patients receiving tramadol hydrochloride within the recommended dosage range. Spontaneous post-marketing reports indicate that seizure risk is increased with doses of tramadol hydrochloride above the recommended range. Concomitant use of tramadol hydrochloride increases the seizure risk in patients taking:
Administration of tramadol hydrochloride may enhance the seizure risk in patients taking:
Risk of convulsions may also increase in patients with epilepsy, those with a history of seizures, or in patients with a recognized risk for seizure (such as head trauma, metabolic disorders, alcohol and drug withdrawal, CNS infections). In tramadol hydrochloride overdose, naloxone administration may increase the risk of seizure.
Anaphylactoid Reactions
Serious and rarely fatal anaphylactoid reactions have been reported in patients receiving therapy with tramadol hydrochloride. When these events do occur it is often following the first dose. Other reported allergic reactions include pruritus, hives, bronchospasm, angioedema, toxic epidermal necrolysis and Stevens-Johnson syndrome. Patients with a history of anaphylactoid reactions to codeine and other opioids may be at increased risk and therefore should not receive tramadol hydrochloride (see).
Respiratory Depression
Administer tramadol hydrochloride cautiously in patients at risk for respiratory depression. In these patients alternative non-opioid analgesics should be considered. When large doses of tramadol hydrochloride are administered with anesthetic medications or alcohol, respiratory depression may result. Respiratory depression should be treated as an overdose. If naloxone is to be administered, use cautiously because it may precipitate seizures (see and).
Interaction with Central Nervous System (CNS) Depressants
Tramadol hydrochloride should be used with caution and in reduced dosages when administered to patients receiving CNS depressants such as alcohol, opioids, anesthetic agents, narcotics, phenothiazines, tranquilizers or sedative hypnotics. Tramadol hydrochloride increases the risk of CNS and respiratory depression in these patients.
Increased Intracranial Pressure or Head Trauma
Tramadol hydrochloride should be used with caution in patients with increased intracranial pressure or head injury. The respiratory depressant effects of opioids include carbon dioxide retention and secondary elevation of cerebrospinal fluid pressure, and may be markedly exaggerated in these patients. Additionally, pupillary changes (miosis) from tramadol may obscure the existence, extent, or course of intracranial pathology. Clinicians should also maintain a high index of suspicion for adverse drug reaction when evaluating altered mental status in these patients if they are receiving tramadol hydrochloride tablets. (See)
Use in Ambulatory Patients
Tramadol hydrochloride may impair the mental and or physical abilities required for the performance of potentially hazardous tasks such as driving a car or operating machinery. The patient using this drug should be cautioned accordingly.
Use with MAO Inhibitors and Serotonin Re-uptake Inhibitors
Use tramadol hydrochloride with great caution in patients taking monoamine oxidase inhibitors. Animal studies have shown increased deaths with combined administration. Concomitant use of tramadol hydrochloride with MAO inhibitors or SSRI’s increases the risk of adverse events, including seizure and serotonin syndrome.
Withdrawal
Withdrawal symptoms may occur if tramadol hydrochloride is discontinued abruptly. (See) These symptoms may include: anxiety, sweating, insomnia, rigors, pain, nausea, tremors, diarrhea, upper respiratory symptoms, piloerection, and rarely hallucinations. Other symptoms that have been seen less frequently with tramadol hydrochloride discontinuation include: panic attacks, severe anxiety, and paresthesias. Clinical experience suggests that withdrawal symptoms may be avoided by tapering tramadol hydrochloride at the time of discontinuation.
Physical Dependence and Abuse
Tramadol hydrochloride may induce psychic and physical dependence of the morphine-type (μ-opioid) (see). Tramadol hydrochloride should not be used in opioid-dependent patients. Tramadol hydrochloride has been shown to reinitiate physical dependence in some patients that have been previously dependent on other opioids. Dependence and abuse, including drug-seeking behavior and taking illicit actions to obtain the drug, are not limited to those patients with prior history of opioid dependence.
Risk of Overdosage
Serious potential consequences of overdosage with tramadol hydrochloride are central nervous system depression, respiratory depression and death. In treating an overdose, primary attention should be given to maintaining adequate ventilation along with general supportive treatment (see).
What are the precautions of Tramadol HCl?
Acute Abdominal Conditions
The administration of tramadol hydrochloride may complicate the clinical assessment of patients with acute abdominal conditions.
Use in Renal and Hepatic Disease
Impaired renal function results in a decreased rate and extent of excretion of tramadol and its active metabolite, M1. In patients with creatinine clearances of less than 30 mL/min, dosing reduction is recommended (see). Metabolism of tramadol and M1 is reduced in patients with advanced cirrhosis of the liver. In cirrhotic patients, dosing reduction is recommended (see).
With the prolonged half-life in these conditions, achievement of steady-state is delayed, so that it may take several days for elevated plasma concentrations to develop.
Information for Patients
Drug Interactions
In vitro
Use with Carbamazepine
Patients taking may have a significantly reduced analgesic effect of tramadol hydrochloride. Because carbamazepine increases tramadol metabolism and because of the seizure risk associated with tramadol, concomitant administration of tramadol hydrochloride and carbamazepine is not recommended.
Use with Quinidine
Tramadol is metabolized to M1 by the CYP2D6. is a selective inhibitor of that isoenzyme, so that concomitant administration of quinidine and tramadol hydrochloride results in increased concentrations of tramadol and reduced concentrations of M1. The clinical consequences of these findings are unknown. drug interaction studies in human liver microsomes indicate that tramadol has no effect on quinidine metabolism.
Use with Inhibitors of CYP2D6
In vitro
Use with Cimetidine
Concomitant administration of tramadol hydrochloride with does not result in clinically significant changes in tramadol pharmacokinetics. Therefore, no alteration of the tramadol hydrochloride dosage regimen is recommended.
Use with MAO Inhibitors
Interactions with , due to interference with detoxification mechanisms, have been reported for some centrally acting drugs (see).
Use with Digoxin and Warfarin
Post-marketing surveillance has revealed rare reports of digoxin toxicity and alteration of warfarin effect, including elevation of pro-thrombin times.
Carcinogenesis, Mutagenesis, Impairment of Fertility
A slight, but statistically significant, increase in two common murine tumors, pulmonary and hepatic, was observed in a mouse carcinogenicity study, particularly in aged mice. Mice were dosed orally up to 30 mg/kg (90 mg/m or 0.36 times the maximum daily human dosage of 246 mg/m) for approximately two years, although the study was not done with the Maximum Tolerated Dose. This finding is not believed to suggest risk in humans. No such finding occurred in a rat carcinogenicity study (dosing orally up to 30 mg/kg, 180 mg/m, or 0.73 times the maximum daily human dosage).
Tramadol was not mutagenic in the following assays: Ames microsomal activation test, CHO/HPRT mammalian cell assay, mouse lymphoma assay (in the absence of metabolic activation), dominant lethal mutation tests in mice, chromosome aberration test in Chinese hamsters, and bone marrow micronucleus tests in mice and Chinese hamsters. Weakly mutagenic results occurred in the presence of metabolic activation in the mouse lymphoma assay and micronucleus test in rats. Overall, the weight of evidence from these tests indicates that tramadol does not pose a genotoxic risk to humans.
No effects on fertility were observed for tramadol at oral dose levels up to 50 mg/kg (300 mg/m) in male rats and 75 mg/kg (450 mg/m) in female rats. These dosages are 1.2 and 1.8 times the maximum daily human dosage of 246 mg/m, respectively.
Pregnancy
Pregnancy Category C
Tramadol has been shown to be embryotoxic and fetotoxic in mice, (120 mg/kg or 360 mg/m), rats (≥25 mg/kg or 150 mg/m) and rabbits (≥75 mg/kg or 900 mg/m) at maternally toxic dosages, but was not teratogenic at these dose levels. These dosages on a mg/m basis are 1.4, ≥0.6, and ≥3.6 times the maximum daily human dosage (246 mg/m) for mouse, rat and rabbit, respectively.
No drug-related teratogenic effects were observed in progeny of mice (up to 140 mg/kg or 420 mg/m), rats (up to 80 mg/kg or 480 mg/m) or rabbits (up to 300 mg/kg or 3600 mg/m) treated with tramadol by various routes. Embryo and fetal toxicity consisted primarily of decreased fetal weights, skeletal ossification and increased supernumerary ribs at maternally toxic dose levels. Transient delays in developmental or behavioral parameters were also seen in pups from rat dams allowed to deliver. Embryo and fetal lethality were reported only in one rabbit study at 300 mg/kg (3600 mg/m), a dose that would cause extreme maternal toxicity in the rabbit. The dosages listed for mouse, rat and rabbit are 1.7, 1.9 and 14.6 times the maximum daily human dosage (246 mg/m), respectively.
Tramadol was evaluated in peri- and post-natal studies in rats. Progeny of dams receiving oral (gavage) dose levels of 50 mg/kg (300 mg/m or 1.2 times the maximum daily human tramadol dosage) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (480 mg/m or 1.9 times the maximum daily human dose).
There are no adequate and well-controlled studies in pregnant women. Tramadol hydrochloride should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Neonatal seizures, neonatal withdrawal syndrome, fetal death and still birth have been reported during post-marketing.
Labor and Delivery
Tramadol hydrochloride should not be used in pregnant women prior to or during labor unless the potential benefits outweigh the risks. Safe use in pregnancy has not been established. Chronic use during pregnancy may lead to physical dependence and post-partum withdrawal symptoms in the newborn (see). Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared to maternal veins was 0.83 for 40 women given tramadol during labor.
The effect of tramadol hydrochloride, if any, on the later growth, development, and functional maturation of the child is unknown.
Nursing Mothers
Tramadol hydrochloride is not recommended for obstetrical preoperative medication or for post-delivery analgesia in nursing mothers because its safety in infants and newborns has not been studied. Following a single IV 100 mg dose of tramadol, the cumulative excretion in breast milk within 16 hours postdose was 100 mcg of tramadol (0.1% of the maternal dose) and 27 mcg of M1.
Pediatric Use
The safety and efficacy of tramadol hydrochloride in patients under 16 years of age have not been established. The use of tramadol hydrochloride in the pediatric population is not recommended.
Geriatric Use
In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal or cardiac function and of concomitant disease or other drug therapy. In patients over 75 years of age, daily doses in excess of 300 mg are not recommended (see and).
A total of 455 elderly (65 years of age or older) subjects were exposed to tramadol hydrochloride in controlled clinical trials. Of those, 145 subjects were 75 years of age and older.
In studies including geriatric patients, treatment-limiting adverse events were higher in subjects over 75 years of age compared to those under 65 years of age. Specifically, 30% of those over 75 years of age had gastrointestinal treatment-limiting adverse events compared to 17% of those under 65 years of age. Constipation resulted in discontinuation of treatment in 10% of those over 75.
What are the side effects of Tramadol HCl?
Tramadol hydrochloride was administered to 550 patients during the double-blind or open-label extension periods in U.S. studies of chronic nonmalignant pain. Of these patients, 375 were 65 years old or older. Table 2 reports the cumulative incidence rate of adverse reactions by 7, 30 and 90 days for the most frequent reactions (5% or more by 7 days). The most frequently reported events were in the central nervous system and gastrointestinal system. Although the reactions listed in the table are felt to be probably related to tramadol hydrochloride administration, the reported rates also include some events that may have been due to underlying disease or concomitant medication. The overall incidence rates of adverse experiences in these trials were similar for tramadol hydrochloride and the active control groups, TYLENOL with Codeine #3 (acetaminophen 300 mg with codeine phosphate 30 mg), and aspirin 325 mg with codeine phosphate 30 mg (Tylenol with Codeine #3 is the registered trademark of Johnson RW). However, the rates of withdrawals due to adverse events appeared to be higher in the tramadol hydrochloride groups.
Incidence 1% to less than 5%, possibly causally related:
Body as a Whole:
Cardiovascular:
Central Nervous System:
Gastrointestinal:
Musculoskeletal:
Skin:
Special Senses:
Urogenital:
Incidence less than 1%, possibly causally related:
Body as a Whole:
Cardiovascular:
Central Nervous System:
Respiratory:
Skin:
Special Senses:
Urogenital:
Other adverse experiences, causal relationship unknown:
Cardiovascular:
Central Nervous System:
Gastrointestinal:
Laboratory Abnormalities:
Sensory:
Up to | Up to | Up to | |
7 Days | 30 Days | 90 Days | |
Dizziness/Vertigo | 26% | 31% | 33% |
Nausea | 24% | 34% | 40% |
Constipation | 24% | 38% | 46% |
Headache | 18% | 26% | 32% |
Somnolence | 16% | 23% | 25% |
Vomiting | 9% | 13% | 17% |
Pruritus | 8% | 10% | 11% |
"CNS Stimulation" | 7% | 11% | 14% |
Asthenia | 6% | 11% | 12% |
Sweating | 6% | 7% | 9% |
Dyspepsia | 5% | 9% | 13% |
Dry Mouth | 5% | 9% | 10% |
Diarrhea | 5% | 6% | 10% |
What should I look out for while using Tramadol HCl?
Tramadol hydrochloride should not be administered to patients who have previously demonstrated hypersensitivity to tramadol, any other component of this product or opioids. Tramadol hydrochloride is contraindicated in any situation where opioids are contraindicated, including acute intoxication with any of the following: alcohol, hypnotics, narcotics, centrally acting analgesics, opioids or psychotropic drugs. Tramadol hydrochloride may worsen central nervous system and respiratory depression in these patients.
What might happen if I take too much Tramadol HCl?
Serious potential consequences of overdosage are respiratory depression, lethargy, coma, seizure, cardiac arrest and death. (See) Fatalities have been reported in post marketing in association with both intentional and unintentional overdose with tramadol hydrochloride. In treating an overdose, primary attention should be given to maintaining adequate ventilation along with general supportive treatment. While naloxone will reverse some, but not all, symptoms caused by overdosage with tramadol hydrochloride, the risk of seizures is also increased with naloxone administration. In animals convulsions following the administration of toxic doses of tramadol could be suppressed with barbiturates or benzodiazepines but were increased with naloxone. Naloxone administration did not change the lethality of an overdose in mice. Hemodialysis is not expected to be helpful in an overdose because it removes less than 7% of the administered dose in a 4-hour dialysis period.
How should I store and handle Tramadol HCl?
Store below 30°C (86°F).Manufactured by:DANBURY PHARMACAL, INC.Danbury, CT 06810Store below 30°C (86°F).Manufactured by:DANBURY PHARMACAL, INC.Danbury, CT 06810Tramadol Hydrochloride Tablets, 50 mg are available as white, round, film coated tablets, debossed with on one side and on the other. Each tablet contains 50 mg of tramadol hydrochloride. They are supplied in bottles of 100, 500 and 1000 tablets.Store at controlled room temperature 15°-30°C (59°-86°F). [See USP.]Dispense in a tight container as defined in the USP.Watson Laboratories, Inc.30354-3Rev: August 2004Tramadol Hydrochloride Tablets, 50 mg are available as white, round, film coated tablets, debossed with on one side and on the other. Each tablet contains 50 mg of tramadol hydrochloride. They are supplied in bottles of 100, 500 and 1000 tablets.Store at controlled room temperature 15°-30°C (59°-86°F). [See USP.]Dispense in a tight container as defined in the USP.Watson Laboratories, Inc.30354-3Rev: August 2004Tramadol Hydrochloride Tablets, 50 mg are available as white, round, film coated tablets, debossed with on one side and on the other. Each tablet contains 50 mg of tramadol hydrochloride. They are supplied in bottles of 100, 500 and 1000 tablets.Store at controlled room temperature 15°-30°C (59°-86°F). [See USP.]Dispense in a tight container as defined in the USP.Watson Laboratories, Inc.30354-3Rev: August 2004Tramadol Hydrochloride Tablets, 50 mg are available as white, round, film coated tablets, debossed with on one side and on the other. Each tablet contains 50 mg of tramadol hydrochloride. They are supplied in bottles of 100, 500 and 1000 tablets.Store at controlled room temperature 15°-30°C (59°-86°F). [See USP.]Dispense in a tight container as defined in the USP.Watson Laboratories, Inc.30354-3Rev: August 2004
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
Tramadol hydrochloride is a centrally acting synthetic opioid analgesic. Although its mode of action is not completely understood, from animal tests, at least two complementary mechanisms appear applicable: binding of parent and M1 metabolite to μ-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin.
Opioid activity is due to both low affinity binding of the parent compound and higher affinity binding of the -demethylated metabolite M1 to μ-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in μ-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opiate antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound (see).
Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin as have some other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of tramadol hydrochloride. Analgesia in humans begins approximately within one hour after administration and reaches a peak in approximately two to three hours.
Apart from analgesia, tramadol hydrochloride administration may produce a constellation of symptoms (including dizziness, somnolence, nausea, constipation, sweating and pruritus) similar to that of other opioids. In contrast to morphine, tramadol has not been shown to cause histamine release. At therapeutic doses, tramadol hydrochloride has no effect on heart rate, left-ventricular function or cardiac index. Orthostatic hypotension has been observed.
Non-Clinical Toxicology
Tramadol hydrochloride should not be administered to patients who have previously demonstrated hypersensitivity to tramadol, any other component of this product or opioids. Tramadol hydrochloride is contraindicated in any situation where opioids are contraindicated, including acute intoxication with any of the following: alcohol, hypnotics, narcotics, centrally acting analgesics, opioids or psychotropic drugs. Tramadol hydrochloride may worsen central nervous system and respiratory depression in these patients.Theophylline interacts with a wide variety of drugs. The interaction may be pharmacodynamic, i.e., alterations in the therapeutic response to theophylline or another drug or occurrence of adverse effects without a change in serum theophylline concentration. More frequently, however, the interaction is pharmacokinetic, i.e., the rate of theophylline clearance is altered by another drug resulting in increased or decreased serum theophylline concentrations. Theophylline only rarely alters the pharmacokinetics of other drugs.
The drugs listed in Table II have the potential to produce clinically significant pharmacodynamic or pharmacokinetic interactions with theophylline. The information in the “Effect” column of Table II assumes that the interacting drug is being added to a steady-state theophylline regimen. If theophylline is being initiated in a patient who is already taking a drug that inhibits theophylline clearance (e.g., cimetidine, erythromycin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be smaller. Conversely, if theophylline is being initiated in a patient who is already taking a drug that enhances theophylline clearance (e.g., rifampin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be larger. Discontinuation of a concomitant drug that increases theophylline clearance will result in accumulation of theophylline to potentially toxic levels, unless the theophylline dose is appropriately reduced. Discontinuation of a concomitant drug that inhibits theophylline clearance will result in decreased serum theophylline concentrations, unless the theophylline dose is appropriately increased.
The drugs listed in Table III have either been documented not to interact with theophylline or do not produce a clinically significant interaction (i.e., <15% change in theophylline clearance).
The listing of drugs in Tables II and III are current as of February 9, 1995. New interactions are continuously being reported for theophylline, especially with new chemical entities. The clinician should not assume that a drug does not interact with theophylline if it is not listed in Table II. Before addition of a newly available drug in a patient receiving theophylline, the package insert of the new drug and/or the medical literature should be consulted to determine if an interaction between the new drug and theophylline has been reported.
The Effect Of Other Drugs On Theophylline Serum Concentration Measurements:
The administration of tramadol hydrochloride may complicate the clinical assessment of patients with acute abdominal conditions.
Tramadol hydrochloride was administered to 550 patients during the double-blind or open-label extension periods in U.S. studies of chronic nonmalignant pain. Of these patients, 375 were 65 years old or older. Table 2 reports the cumulative incidence rate of adverse reactions by 7, 30 and 90 days for the most frequent reactions (5% or more by 7 days). The most frequently reported events were in the central nervous system and gastrointestinal system. Although the reactions listed in the table are felt to be probably related to tramadol hydrochloride administration, the reported rates also include some events that may have been due to underlying disease or concomitant medication. The overall incidence rates of adverse experiences in these trials were similar for tramadol hydrochloride and the active control groups, TYLENOL with Codeine #3 (acetaminophen 300 mg with codeine phosphate 30 mg), and aspirin 325 mg with codeine phosphate 30 mg (Tylenol with Codeine #3 is the registered trademark of Johnson RW). However, the rates of withdrawals due to adverse events appeared to be higher in the tramadol hydrochloride groups.
Incidence 1% to less than 5%, possibly causally related:
Body as a Whole:
Cardiovascular:
Central Nervous System:
Gastrointestinal:
Musculoskeletal:
Skin:
Special Senses:
Urogenital:
Incidence less than 1%, possibly causally related:
Body as a Whole:
Cardiovascular:
Central Nervous System:
Respiratory:
Skin:
Special Senses:
Urogenital:
Other adverse experiences, causal relationship unknown:
Cardiovascular:
Central Nervous System:
Gastrointestinal:
Laboratory Abnormalities:
Sensory:
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).