Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Triamterene and Hydrochlorothiazide

×

Overview

What is Triamterene and Hydrochlorothiazide?

Each triamterene and hydrochlorothiazide capsule for oral administration contains hydrochlorothiazide 25 mg and triamterene 37.5 mg. Hydrochlorothiazide is a diuretic/antihypertensive agent and triamterene is an antikaliuretic agent.

Hydrochlorothiazide is slightly soluble in water. It is soluble in dilute ammonia, dilute aqueous sodium hydroxide and dimethylformamide. It is sparingly soluble in methanol.

Hydrochlorothiazide is 6-chloro-3,4-dihydro-2-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide and its structural formula is:

Molecular Formula: CHClNOS

At 50°C, triamterene is practically insoluble in water (less than 0.1%). It is soluble in formic acid, sparingly soluble in methoxyethanol and very slightly soluble in alcohol.

Triamterene is 2,4,7-triamino-6-phenylpteridine and its structural formula is:

Molecular Formula: CHN

Inactive ingredients consist of colloidal silicon dioxide, croscarmellose sodium, gelatin, magnesium stearate, microcrystalline cellulose, pharmaceutical glaze, polyethylene glycol, polysorbate 80, propylene glycol, silicon dioxide, sodium bicarbonate, sodium lauryl sulfate, synthetic black iron oxide, titanium dioxide, yellow iron oxide, D&C Yellow #10 Aluminum Lake, FD&C Blue #1, FD&C Blue #1 Aluminum Lake, FD&C Blue #2 Aluminum Lake, and FD&C Red #40 Aluminum Lake.

Triamterene and Hydrochlorothiazide Capsules, USP 37.5 mg/25 mg meet .



What does Triamterene and Hydrochlorothiazide look like?



What are the available doses of Triamterene and Hydrochlorothiazide?

Sorry No records found.

What should I talk to my health care provider before I take Triamterene and Hydrochlorothiazide?

Sorry No records found

How should I use Triamterene and Hydrochlorothiazide?

This fixed combination drug is not indicated for the initial therapy of edema or hypertension except in individuals in whom the development of hypokalemia cannot be risked.

Triamterene and hydrochlorothiazide capsules are indicated for the treatment of hypertension or edema in patients who develop hypokalemia on hydrochlorothiazide alone.

Triamterene and hydrochlorothiazide capsules are also indicated for those patients who require a thiazide diuretic and in whom the development of hypokalemia cannot be risked.

Triamterene and hydrochlorothiazide capsules may be used alone or as an adjunct to other antihypertensive drugs, such as beta-blockers. Since triamterene and hydrochlorothiazide capsules may enhance the action of these agents, dosage adjustments may be necessary.

The usual dose of triamterene and hydrochlorothiazide capsules is one or two capsules given once daily, with appropriate monitoring of serum potassium and of the clinical effect. (See .)


What interacts with Triamterene and Hydrochlorothiazide?

Sorry No Records found


What are the warnings of Triamterene and Hydrochlorothiazide?

Hyperkalemia

Abnormal elevation of serum potassium levels (greater than or equal to 5.5 mEq/liter) can occur with all potassium-sparing diuretic combinations, including triamterene and hydrochlorothiazide capsules. Hyperkalemia is more likely to occur in patients with renal impairment and diabetes (even without evidence of renal impairment), and in the elderly or severely ill. Since uncorrected hyperkalemia may be fatal, serum potassium levels must be monitored at frequent intervals especially in patients first receiving triamterene and hydrochlorothiazide capsules, when dosages are changed or with any illness that may influence renal function.

If hyperkalemia is suspected (warning signs include paresthesias, muscular weakness, fatigue, flaccid paralysis of the extremities, bradycardia and shock), an electrocardiogram (ECG) should be obtained. However, it is important to monitor serum potassium levels because hyperkalemia may not be associated with ECG changes.

If hyperkalemia is present, triamterene and hydrochlorothiazide capsules should be discontinued immediately and a thiazide alone should be substituted. If the serum potassium exceeds 6.5 mEq/liter more vigorous therapy is required. The clinical situation dictates the procedures to be employed. These include the intravenous administration of calcium chloride solution, sodium bicarbonate solution and/or the oral or parenteral administration of glucose with a rapid-acting insulin preparation. Cationic exchange resins such as sodium polystyrene sulfonate may be orally or rectally administered. Persistent hyperkalemia may require dialysis.

The development of hyperkalemia associated with potassium-sparing diuretics is accentuated in the presence of renal impairment (see section). Patients with mild renal functional impairment should not receive this drug without frequent and continuing monitoring of serum electrolytes. Cumulative drug effects may be observed in patients with impaired renal function. The renal clearances of hydrochlorothiazide and the pharmacologically active metabolite of triamterene, the sulfate ester of hydroxytriamterene, have been shown to be reduced and the plasma levels increased following triamterene and hydrochlorothiazide administration to elderly patients and patients with impaired renal function.

Hyperkalemia has been reported in diabetic patients with the use of potassium-sparing agents even in the absence of apparent renal impairment. Accordingly, serum electrolytes must be frequently monitored if triamterene and hydrochlorothiazide capsules are used in diabetic patients.

Metabolic or Respiratory Acidosis

Potassium-sparing therapy should also be avoided in severely ill patients in whom respiratory or metabolic acidosis may occur. Acidosis may be associated with rapid elevations in serum potassium levels. If triamterene and hydrochlorothiazide capsules are employed, frequent evaluations of acid/base balance and serum electrolytes are necessary.


What are the precautions of Triamterene and Hydrochlorothiazide?

Diabetes

Caution should be exercised when administering triamterene and hydrochlorothiazide capsules to patients with diabetes, since thiazides may cause hyperglycemia, glycosuria and alter insulin requirements in diabetes. Also, diabetes mellitus may become manifest during thiazide administration.

Impaired Hepatic Function

Thiazides should be used with caution in patients with impaired hepatic function. They can precipitate hepatic coma in patients with severe liver disease. Potassium depletion induced by the thiazide may be important in this connection. Administer triamterene and hydrochlorothiazide capsules cautiously and be alert for such early signs of impending coma as confusion, drowsiness and tremor; if mental confusion increases discontinue triamterene and hydrochlorothiazide capsules for a few days. Attention must be given to other factors that may precipitate hepatic coma, such as blood in the gastrointestinal tract or preexisting potassium depletion.

Hypokalemia

Hypokalemia is uncommon with triamterene and hydrochlorothiazide capsules; but, should it develop, corrective measures should be taken such as potassium supplementation or increased intake of potassium-rich foods. Institute such measures cautiously with frequent determinations of serum potassium levels, especially in patients receiving digitalis or with a history of cardiac arrhythmias. If serious hypokalemia (serum potassium less than 3.0 mEq/L) is demonstrated by repeat serum potassium determinations, triamterene and hydrochlorothiazide capsules should be discontinued and potassium chloride supplementation initiated. Less serious hypokalemia should be evaluated with regard to other coexisting conditions and treated accordingly.

Electrolyte Imbalance

Electrolyte imbalance, often encountered in such conditions as heart failure, renal disease or cirrhosis of the liver, may also be aggravated by diuretics and should be considered during triamterene and hydrochlorothiazide therapy when using high doses for prolonged periods or in patients on a salt-restricted diet. Serum determinations of electrolytes should be performed, and are particularly important if the patient is vomiting excessively or receiving fluids parenterally. Possible fluid and electrolyte imbalance may be indicated by such warning signs as: dry mouth, thirst, weakness, lethargy, drowsiness, restlessness, muscle pain or cramps, muscular fatigue, hypotension, oliguria, tachycardia and gastrointestinal symptoms.

Hypochloremia

Although any chloride deficit is generally mild and usually does not require specific treatment except under extraordinary circumstances (as in liver disease or renal disease), chloride replacement may be required in the treatment of metabolic alkalosis. Dilutional hyponatremia may occur in edematous patients in hot weather; appropriate therapy is water restriction, rather than administration of salt, except in rare instances when the hyponatremia is life threatening. In actual salt depletion, appropriate replacement is the therapy of choice.

Renal Stones

Triamterene has been found in renal stones in association with the other usual calculus components. Triamterene and hydrochlorothiazide capsules should be used with caution in patients with a history of renal stones.

Laboratory Tests

Serum Potassium

The normal adult range of serum potassium is 3.5 to 5.0 mEq per liter with 4.5 mEq often being used for a reference point. If hypokalemia should develop, corrective measures should be taken such as potassium supplementation or increased dietary intake of potassium-rich foods.

Institute such measures cautiously with frequent determinations of serum potassium levels. Potassium levels persistently above 6 mEq per liter require careful observation and treatment. Serum potassium levels do not necessarily indicate true body potassium concentration. A rise in plasma pH may cause a decrease in plasma potassium concentration and an increase in the intracellular potassium concentration. Discontinue corrective measures for hypokalemia immediately if laboratory determinations reveal an abnormal elevation of serum potassium. Discontinue triamterene and hydrochlorothiazide capsules and substitute a thiazide diuretic alone until potassium levels return to normal.

Serum Creatinine and BUN

Triamterene and hydrochlorothiazide may produce an elevated blood urea nitrogen level, creatinine level or both. This apparently is secondary to a reversible reduction of glomerular filtration rate or a depletion of intravascular fluid volume (prerenal azotemia) rather than renal toxicity; levels usually return to normal when triamterene and hydrochlorothiazide capsules are discontinued. If azotemia increases, discontinue triamterene and hydrochlorothiazide capsules. Periodic BUN or serum creatinine determinations should be made, especially in elderly patients and in patients with suspected or confirmed renal insufficiency.

Serum PBI

Thiazide may decrease serum PBI levels without sign of thyroid disturbance.

Parathyroid Function

Thiazides should be discontinued before carrying out tests for parathyroid function. Calcium excretion is decreased by thiazides. Pathologic changes in the parathyroid glands with hypercalcemia and hypophosphatemia have been observed in a few patients on prolonged thiazide therapy. The common complications of hyperparathyroidism such as bone resorption and peptic ulceration have not been seen.

Drug Interactions

Angiotensin-converting enzyme inhibitors

Potassium-sparing agents should be used with caution in conjunction with angiotensin-converting enzyme (ACE) inhibitors due to an increased risk of hyperkalemia.

Oral hypoglycemic drugs

Concurrent use with chlorpropamide may increase the risk of severe hyponatremia.

Nonsteroidal anti-inflammatory drugs

A possible interaction resulting in acute renal failure has been reported in a few patients on triamterene and hydrochlorothiazide capsules when treated with indomethacin, a nonsteroidal anti-inflammatory agent. Caution is advised in administering nonsteroidal anti-inflammatory agents with triamterene and hydrochlorothiazide capsules.

Lithium

Lithium generally should not be given with diuretics because they reduce its renal clearance and increase the risk of lithium toxicity. Read circulars for lithium preparations before use of such concomitant therapy with triamterene and hydrochlorothiazide capsules.

Surgical considerations

Thiazides have been shown to decrease arterial responsiveness to norepinephrine (an effect attributed to loss of sodium). This diminution is not sufficient to preclude effectiveness of the pressor agent for therapeutic use. Thiazides have also been shown to increase the paralyzing effect of nondepolarizing muscle relaxants such as tubocurarine (an effect attributed to potassium loss); consequently caution should be observed in patients undergoing surgery.

Other Considerations

Concurrent use of hydrochlorothiazide with amphotericin B or corticosteroids or corticotropin (ACTH) may intensify electrolyte imbalance, particularly hypokalemia, although the presence of triamterene minimizes the hypokalemic effect.

Thiazides may add to or potentiate the action of other antihypertensive drugs. See for concomitant use with other antihypertensive drugs.

The effect of oral anticoagulants may be decreased when used concurrently with hydrochlorothiazide; dosage adjustments may be necessary.

Triamterene and hydrochlorothiazide may raise the level of blood uric acid; dosage adjustments of antigout medication may be necessary to control hyperuricemia and gout.

The following agents given together with triamterene may promote serum potassium accumulation and possibly result in hyperkalemia because of the potassium-sparing nature of triamterene, especially in patients with renal insufficiency: blood from blood bank (may contain up to 30 mEq of potassium per liter of plasma or up to 65 mEq per liter of whole blood when stored for more than 10 days); low-salt milk (may contain up to 60 mEq of potassium per liter); potassium-containing medications (such as parenteral penicillin G potassium); salt substitutes (most contain substantial amounts of potassium).

Exchange resins, such as sodium polystyrene sulfonate, whether administered orally or rectally, reduce serum potassium levels by sodium replacement of the potassium; fluid retention may occur in some patients because of the increased sodium intake.

Chronic or overuse of laxatives may reduce serum potassium levels by promoting excessive potassium loss from the intestinal tract; laxatives may interfere with the potassium-retaining effects of triamterene.

The effectiveness of methenamine may be decreased when used concurrently with hydrochlorothiazide because of alkalinization of the urine.

Drug/Laboratory Test Interactions

Triamterene and quinidine have similar fluorescence spectra; thus, triamterene and hydrochlorothiazide will interfere with the fluorescent measurement of quinidine.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Long-term studies have not been conducted with the triamterene/hydrochlorothiazide combination, or with triamterene alone.

Hydrochlorothiazide

Two-year feeding studies in mice and rats, conducted under the auspices of the National Toxicology Program (NTP), treated mice and rats with doses of hydrochlorothiazide up to 600 and 100 mg/kg/day, respectively. On a body-weight basis, these doses are 600 times (in mice) and 100 times (in rats) the Maximum Recommended Human Dose (MRHD) for the hydrochlorothiazide component of triamterene and hydrochlorothiazide capsules at 50 mg/day (or 1 mg/kg/day based on 50 kg individuals). On the basis of body-surface area, these doses are 56 times (in mice) and 21 times (in rats) the MRHD. These studies uncovered no evidence of carcinogenic potential of hydrochlorothiazide in rats or female mice, but there was equivocal evidence of hepatocarcinogenicity in male mice.

Mutagenesis

Studies of the mutagenic potential of the triamterene/ hydrochlorothiazide combination, or of triamterene alone have not been performed.

Hydrochlorothiazide

Hydrochlorothiazide was not genotoxic in assays using strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538 of (the Ames test); in the Chinese Hamster Ovary (CHO) test for chromosomal aberrations; or in assays using mouse germinal cell chromosomes, Chinese hamster bone marrow chromosomes, and the sex-linked recessive lethal trait gene. Positive test results were obtained in the CHO Sister Chromatid Exchange (clastogenicity) test, and in the mouse Lymphoma Cell (mutagenicity) assays, using concentrations of hydrochlorothiazide of 43 to 1300 mcg/mL. Positive test results were also obtained in the nondisjunction assay, using an unspecified concentration of hydrochlorothiazide.

Impairment of Fertility

Studies of the effects of the triamterene/hydrochlorothiazide combination, or of triamterene alone on animal reproductive function have not been conducted.

Hydrochlorothiazide

Hydrochlorothiazide had no adverse effects on the fertility of mice and rats of either sex in studies wherein these species were exposed, via their diet, to doses of up to 100 and 4 mg/kg/day, respectively, prior to mating and throughout gestation. Corresponding multiples of the MRHD are 100 (mice) and 4 (rats) on the basis of body-weight and 9.4 (mice) and 0.8 (rats) on the basis of body-surface area.

Pregnancy

Teratogenic Effects. Pregnancy Category C

Triamterene and hydrochlorothiazide

Animal reproduction studies to determine the potential for fetal harm by triamterene and hydrochlorothiazide have not been conducted. However, a One Generation Study in the rat approximated triamterene and hydrochlorothiazide capsules' composition by using a 1:1 ratio of triamterene to hydrochlorothiazide (30:30 mg/kg/day); there was no evidence of teratogenicity at those doses which were, on a body-weight basis, 15 and 30 times, respectively, the MRHD, and on the basis of body-surface area, 3.1 and 6.2 times, respectively, the MRHD.

The safe use of triamterene and hydrochlorothiazide capsules in pregnancy has not been established since there are no adequate and well-controlled studies with triamterene and hydrochlorothiazide in pregnant women. Triamterene and hydrochlorothiazide capsules should be used during pregnancy only if the potential benefit justifies the risk to the fetus.

Triamterene

Reproduction studies have been performed in rats at doses as high as 20 times the MRHD on the basis of body-weight, and 6 times the human dose on the basis of body-surface area without evidence of harm to the fetus due to triamterene.

Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Hydrochlorothiazide

Hydrochlorothiazide was orally administered to pregnant mice and rats during respective periods of major organogenesis at doses up to 3000 and 1000 mg/kg/day, respectively. At these doses, which are multiples of the MRHD equal to 3000 for mice and 1000 for rats, based on body-weight, and equal to 282 for mice and 206 for rats, based on body-surface area, there was no evidence of harm to the fetus.

There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Nonteratogenic Effects

Thiazides and triamterene have been shown to cross the placental barrier and appear in cord blood. The use of thiazides and triamterene in pregnant women requires that the anticipated benefit be weighed against possible hazards to the fetus. These hazards include fetal or neonatal jaundice, pancreatitis, thrombocytopenia and possible other adverse reactions which have occurred in the adult.

Nursing Mothers

Thiazides and triamterene in combination have not been studied in nursing mothers. Triamterene appears in animal milk; this may occur in humans. Thiazides are excreted in human breast milk. If use of the combination drug product is deemed essential, the patient should stop nursing.

Pediatric Use

Safety and effectiveness in pediatric patients have not been established.


What are the side effects of Triamterene and Hydrochlorothiazide?

Adverse effects are listed in decreasing order of frequency; however, the most serious adverse effects are listed first regardless of frequency. The serious adverse effects associated with triamterene and hydrochlorothiazide capsules have commonly occurred in less than 0.1% of patients treated with this product.

Hypersensitivity:

Cardiovascular:

Metabolic:

Gastrointestinal:

Renal:

Hematologic:

Musculoskeletal:

Central Nervous System:

Miscellaneous:

Thiazides alone have been shown to cause the following additional adverse reactions:

Central Nervous System:

Ophthalmic:

Respiratory:

Other:

Hematologic:

Neonate and Infancy:


What should I look out for while using Triamterene and Hydrochlorothiazide?


What might happen if I take too much Triamterene and Hydrochlorothiazide?

Electrolyte imbalance is the major concern (see ). Symptoms reported include: polyuria, nausea, vomiting, weakness, lassitude, fever, flushed face and hyperactive deep tendon reflexes. If hypotension occurs, it may be treated with pressor agents such as norepinephrine to maintain blood pressure. Carefully evaluate the electrolyte pattern and fluid balance. Induce immediate evacuation of the stomach through emesis or gastric lavage. There is no specific antidote.

Reversible acute renal failure following ingestion of 50 tablets of a product containing a combination of 50 mg triamterene and 25 mg hydrochlorothiazide has been reported.

Although triamterene is largely protein-bound (approximately 67%), there may be some benefit to dialysis in cases of overdosage.


How should I store and handle Triamterene and Hydrochlorothiazide?

Store below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyStore below 30° C (86° F) [see USP].Dispense in a tight, light-resistant container as defined in USP/NF.BIBLIOGRAPHYAvailable on request.Manufactured by:Patheon Pharmaceuticals Inc.Cincinnati, OH 45215 USAFor: Corona, CA 92880This Product was Repackaged By:State of Florida DOH Central PharmacyTriamterene and Hydrochlorothiazide Capsules, USP are available containing 37.5 mg triamterene and 25 mg hydrochlorothiazide in opaque olive and opaque rich yellow capsules imprinted in black ink with over on both body and cap. They are supplied by as follows:Triamterene and Hydrochlorothiazide Capsules, USP are available containing 37.5 mg triamterene and 25 mg hydrochlorothiazide in opaque olive and opaque rich yellow capsules imprinted in black ink with over on both body and cap. They are supplied by as follows:


×

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

A placebo-controlled, double-blind trial was conducted to evaluate the efficacy of triamterene and hydrochlorothiazide capsules. This trial demonstrated that triamterene and hydrochlorothiazide capsules (37.5 mg triamterene/25 mg hydrochlorothiazide) were effective in controlling blood pressure while reducing the incidence of hydrochlorothiazide-induced hypokalemia. This trial involved 636 patients with mild to moderate hypertension controlled by hydrochlorothiazide 25 mg daily and who had hypokalemia (serum potassium < 3.5 mEq/L) secondary to the hydrochlorothiazide. Patients were randomly assigned to 4 weeks' treatment with once-daily regimens of 25 mg hydrochlorothiazide plus placebo, or 25 mg hydrochlorothiazide combined with one of the following doses of triamterene: 25 mg, 37.5 mg, 50 mg or 75 mg.

Blood pressure and serum potassium were monitored at baseline and throughout the trial. All five treatment groups had similar mean blood pressure and serum potassium concentrations at baseline (mean systolic blood pressure range: 137 ± 14 mmHg to 140 ± 16 mmHg; mean diastolic blood pressure range: 86 ± 9 mmHg to 88 ± 8 mmHg; mean serum potassium range: 2.3 to 3.4 mEq/L with the majority of patients having values between 3.1 and 3.4 mEq/L).

While all triamterene regimens reversed hypokalemia, at week 4 the 37.5 mg regimen proved optimal compared with the other tested regimens. On this regimen, 81% of the patients had a significant (p < 0.05) reversal of hypokalemia vs. 59% of patients on the placebo/hydrochlorothiazide regimen. The mean serum potassium concentration on 37.5 mg triamterene went from 3.2 ± 0.2 mEq/L at baseline to 3.7 ± 0.3 mEq/L at week 4, a significantly greater (p < 0.05) improvement than that achieved with placebo/hydrochlorothiazide (i.e., 3.2 ± 0.2 mEq/L at baseline and 3.5 ± 0.4 mEq/L at week 4). Also, 51% of patients in the 37.5 mg triamterene group had an increase in serum potassium of ≥ 0.5 mEq/L at week 4 vs. 33% in the placebo group. The 37.5 mg triamterene/25 mg hydrochlorothiazide regimen also maintained control of blood pressure; mean supine systolic blood pressure at week 4 was 138 ± 21 mmHg while mean supine diastolic blood pressure was 87 ± 13 mmHg.

Non-Clinical Toxicology
Caution should be exercised when administering triamterene and hydrochlorothiazide capsules to patients with diabetes, since thiazides may cause hyperglycemia, glycosuria and alter insulin requirements in diabetes. Also, diabetes mellitus may become manifest during thiazide administration.

Adverse effects are listed in decreasing order of frequency; however, the most serious adverse effects are listed first regardless of frequency. The serious adverse effects associated with triamterene and hydrochlorothiazide capsules have commonly occurred in less than 0.1% of patients treated with this product.

Hypersensitivity:

Cardiovascular:

Metabolic:

Gastrointestinal:

Renal:

Hematologic:

Musculoskeletal:

Central Nervous System:

Miscellaneous:

Thiazides alone have been shown to cause the following additional adverse reactions:

Central Nervous System:

Ophthalmic:

Respiratory:

Other:

Hematologic:

Neonate and Infancy:

×

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

×

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
×

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
×

Tips

Tips

×

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).