Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Xopenex

×

Overview

What is Xopenex?

Xopenex (levalbuterol HCl) Inhalation Solution is a sterile, clear, colorless, preservative-free solution of the hydrochloride salt of levalbuterol, the (R)-enantiomer of the drug substance racemic albuterol. Levalbuterol HCl is a relatively selective beta-adrenergic receptor agonist (see ). The chemical name for levalbuterol HCl is (R)-α-[[(1,1-dimethylethyl)amino]methyl]-4-hydroxy-1,3-benzenedimethanol hydrochloride, and its established chemical structure is as follows:

The molecular weight of levalbuterol HCl is 275.8, and its empirical formula is CHNO•HCl. It is a white to off-white, crystalline solid, with a melting point of approximately 187°C and solubility of approximately 180 mg/mL in water.

Levalbuterol HCl is the USAN modified name for (R)-albuterol HCl in the United States.

Xopenex (levalbuterol HCl) Inhalation Solution Concentrate supplied in 0.5 mL unit-dose vials should be diluted with sterile normal saline before administration by nebulization. Each 0.5 mL unit-dose vial contains 1.25 mg of levalbuterol (as 1.44 mg of levalbuterol HCl), sodium chloride to adjust tonicity, and hydrochloric acid to adjust the pH to 4.0 (3.3 to 4.5).



What does Xopenex look like?



What are the available doses of Xopenex?

Sorry No records found.

What should I talk to my health care provider before I take Xopenex?

Sorry No records found

How should I use Xopenex?

Xopenex (levalbuterol HCl) Inhalation Solution is indicated for the treatment or prevention of bronchospasm in adults, adolescents, and children 6 years of age and older with reversible obstructive airway disease.

Children 6–11 years old:

Adults and Adolescents

12 years old:

Patients 12 years of age and older with more severe asthma or patients who do not respond adequately to a dose of 0.63 mg of Xopenex Inhalation Solution may benefit from a dosage of 1.25 mg three times a day.

Patients receiving the highest dose of Xopenex Inhalation Solution should be monitored closely for adverse systemic effects, and the risks of such effects should be balanced against the potential for improved efficacy.

The use of Xopenex Inhalation Solution can be continued as medically indicated to control recurring bouts of bronchospasm. During this time, most patients gain optimal benefit from regular use of the inhalation solution.

If a previously effective dosage regimen fails to provide the expected relief, medical advice should be sought immediately, since this is often a sign of seriously worsening asthma that would require reassessment of therapy.

The drug compatibility (physical and chemical), efficacy, and safety of Xopenex Inhalation Solution when mixed with other drugs in a nebulizer have not been established.

The safety and efficacy of Xopenex Inhalation Solution have been established in clinical trials when administered using the PARI LC Jet™ and PARI LC Plus™ nebulizers, and the PARI Master Dura-Neb 2000 and Dura-Neb 3000 compressors. The safety and efficacy of Xopenex Inhalation Solution when administered using other nebulizer systems have not been established.


What interacts with Xopenex?

Sorry No Records found


What are the warnings of Xopenex?

Sorry No Records found


What are the precautions of Xopenex?

Sorry No Records found


What are the side effects of Xopenex?

Sorry No records found


What should I look out for while using Xopenex?

Xopenex (levalbuterol HCl) Inhalation Solution is contraindicated in patients with a history of hypersensitivity to levalbuterol HCl or racemic albuterol.


What might happen if I take too much Xopenex?

The expected symptoms with overdosage are those of excessive beta-adrenergic receptor stimulation and/or occurrence or exaggeration of any of the symptoms listed under e.g., seizures, angina, hypertension or hypotension, tachycardia with rates up to 200 beats/min., arrhythmias, nervousness, headache, tremor, dry mouth, palpitation, nausea, dizziness, fatigue, malaise, and sleeplessness. Hypokalemia also may occur. As with all sympathomimetic medications, cardiac arrest and even death may be associated with the abuse of Xopenex Inhalation Solution. Treatment consists of discontinuation of Xopenex Inhalation Solution together with appropriate symptomatic therapy. The judicious use of a cardioselective beta-receptor blocker may be considered, bearing in mind that such medication can produce bronchospasm. There is insufficient evidence to determine if dialysis is beneficial for overdosage of Xopenex Inhalation Solution.

The intravenous median lethal dose of levalbuterol HCl in mice is approximately 66 mg/kg (approximately 70 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults and children on a mg/m basis). The inhalation median lethal dose has not been determined in animals.


How should I store and handle Xopenex?

Store bottles of 1000 SINGULAIR 5-mg chewable tablets and 8000 SINGULAIR 10-mg film-coated tablets at 25°C (77°F), excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Protect from moisture and light. Store in original container. When product container is subdivided, repackage into a well-closed, light resistant container. Xopenex (levalbuterol HCl) Inhalation Solution Concentrate is supplied in 0.5 mL unit-dose, low-density polyethylene (LDPE) vials, and is a clear, colorless, sterile, preservative-free, aqueous solution. Each vial contains 1.25 mg of levalbuterol (as 1.44 mg of levalbuterol HCl) and is available in cartons of 30 () individually pouched vials.Xopenex (levalbuterol HCl) Inhalation Solution is also available in 3 mL vials in three different strengths of levalbuterol: 0.63 mg (), and 1.25 mg ().Xopenex (levalbuterol HCl) Inhalation Solution Concentrate is supplied in 0.5 mL unit-dose, low-density polyethylene (LDPE) vials, and is a clear, colorless, sterile, preservative-free, aqueous solution. Each vial contains 1.25 mg of levalbuterol (as 1.44 mg of levalbuterol HCl) and is available in cartons of 30 () individually pouched vials.Xopenex (levalbuterol HCl) Inhalation Solution is also available in 3 mL vials in three different strengths of levalbuterol: 0.63 mg (), and 1.25 mg ().


×

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

Activation of beta-adrenergic receptors on airway smooth muscle leads to the activation of adenylcyclase and to an increase in the intracellular concentration of cyclic-3′, 5′-adenosine monophosphate (cyclic AMP). This increase in cyclic AMP leads to the activation of protein kinase A, which inhibits the phosphorylation of myosin and lowers intracellular ionic calcium concentrations, resulting in relaxation. Levalbuterol relaxes the smooth muscles of all airways, from the trachea to the terminal bronchioles. Levalbuterol acts as a functional antagonist to relax the airway irrespective of the spasmogen involved, thus protecting against all bronchoconstrictor challenges. Increased cyclic AMP concentrations are also associated with the inhibition of release of mediators from mast cells in the airway.

While it is recognized that beta-adrenergic receptors are the predominant receptors on bronchial smooth muscle, data indicate that there is a population of beta-receptors in the human heart that comprise between 10% and 50% of cardiac beta-adrenergic receptors. The precise function of these receptors has not been established (see ). However, all beta-adrenergic agonist drugs can produce a significant cardiovascular effect in some patients, as measured by pulse rate, blood pressure, symptoms, and/or electrocardiographic changes.

Results from an study of binding to human beta-adrenergic receptors demonstrated that levalbuterol has approximately 2-fold greater binding affinity than racemic albuterol and approximately 100-fold greater binding affinity than (S)-albuterol. In guinea pig airways, levalbuterol HCl and racemic albuterol decreased the response to spasmogens (e.g., acetylcholine and histamine), whereas (S)-albuterol was ineffective. These results suggest that the bronchodilatory effects of racemic albuterol are attributable to the (R)-enantiomer.

Intravenous studies in rats with racemic albuterol sulfate have demonstrated that albuterol crosses the blood-brain barrier and reaches brain concentrations amounting to approximately 5.0% of the plasma concentrations. In structures outside the blood-brain barrier (pineal and pituitary glands), albuterol concentrations were found to be 100 times those in the whole brain.

Studies in laboratory animals (minipigs, rodents, and dogs) have demonstrated the occurrence of cardiac arrhythmias and sudden death (with histologic evidence of myocardial necrosis) when beta-agonists and methylxanthines are administered concurrently. The clinical significance of these findings is unknown.

The inhalation pharmacokinetics of Xopenex Inhalation Solution were investigated in a randomized cross-over study in 30 healthy adults following administration of a single dose of 1.25 mg and a cumulative dose of 5 mg of Xopenex Inhalation Solution and a single dose of 2.5 mg and a cumulative dose of 10 mg of racemic albuterol sulfate inhalation solution by nebulization using a PARI LC Jet™ nebulizer with a Dura-Neb 2000 compressor.

Following administration of a single 1.25 mg dose of Xopenex Inhalation Solution, exposure to (R)-albuterol (AUC of 3.3 ng•hr/mL) was approximately 2-fold higher than following administration of a single 2.5 mg dose of racemic albuterol inhalation solution (AUC of 1.7 ng•hr/mL) (see ). Following administration of a cumulative 5 mg dose of Xopenex Inhalation Solution (1.25 mg given every 30 minutes for a total of four doses) or a cumulative 10 mg dose of racemic albuterol inhalation solution (2.5 mg given every 30 minutes for a total of four doses), C and AUC of (R)-albuterol were comparable (see ).

The pharmacokinetic parameters of (R)- and (S)-albuterol in children with asthma were obtained using population pharmacokinetic analysis. These data are presented in . For comparison, adult data obtained by conventional pharmacokinetic analysis from a different study also are presented in .

In children, AUC and C of (R)-albuterol following administration of 0.63 mg Xopenex Inhalation Solution were comparable to those following administration of 1.25 mg racemic albuterol sulfate inhalation solution.

When the same dose of 0.63 mg of Xopenex was given to children and adults, the predicted C of (R)–albuterol in children was similar to that in adults (0.52 vs. 0.56 ng/mL), while predicted AUC in children (2.55 ng•hr/mL) was about 1.5-fold higher than that in adults (1.65 ng•hr/mL). These data support lower doses for children 6-11 years old compared with the adult doses (see ).

Information available in the published literature suggests that the primary enzyme responsible for the metabolism of albuterol enantiomers in humans is SULT1A3 (sulfotransferase). When racemic albuterol was administered either intravenously or via inhalation after oral charcoal administration, there was a 3- to 4-fold difference in the area under the concentration-time curves between the (R)- and (S)-albuterol enantiomers, with (S)-albuterol concentrations being consistently higher. However, without charcoal pretreatment, after either oral or inhalation administration the differences were 8- to 24-fold, suggesting that (R)-albuterol is preferentially metabolized in the gastrointestinal tract, presumably by SULT1A3.

The primary route of elimination of albuterol enantiomers is through renal excretion (80% to 100%) of either the parent compound or the primary metabolite. Less than 20% of the drug is detected in the feces. Following intravenous administration of racemic albuterol, between 25% and 46% of the (R)-albuterol fraction of the dose was excreted as unchanged (R)-albuterol in the urine.

Hepatic Impairment:

Renal Impairment:

In a randomized, double-blind, placebo-controlled, cross-over study, 20 adults with mild-to-moderate asthma received single doses of Xopenex Inhalation Solution (0.31, 0.63, and 1.25 mg) and racemic albuterol sulfate inhalation solution (2.5 mg). All doses of active treatment produced a significantly greater degree of bronchodilation (as measured by percent change from pre-dose mean FEV) than placebo, and there were no significant differences between any of the active treatment arms. The bronchodilator responses to 1.25 mg of Xopenex Inhalation Solution and 2.5 mg of racemic albuterol sulfate inhalation solution were clinically comparable over the 6-hour evaluation period, except for a slightly longer duration of action (>15% increase in FEV from baseline) after administration of 1.25 mg of Xopenex Inhalation Solution. Systemic beta-adrenergic adverse effects were observed with all active doses and were generally dose-related for (R)-albuterol. Xopenex Inhalation Solution at a dose of 1.25 mg produced a slightly higher rate of systemic beta-adrenergic adverse effects than the 2.5 mg dose of racemic albuterol sulfate inhalation solution.

In a randomized, double-blind, placebo-controlled, cross-over study, 12 adults with mild-to-moderate asthma were challenged with inhaled methacholine chloride 20 and 180 minutes following administration of a single dose of 2.5 mg of racemic albuterol sulfate, 1.25 mg of Xopenex, 1.25 mg of (S)-albuterol, or placebo using a PARI LC Jet™ nebulizer. Racemic albuterol sulfate, Xopenex, and (S)-albuterol had a protective effect against methacholine-induced bronchoconstriction 20 minutes after administration, although the effect of (S)-albuterol was minimal. At 180 minutes after administration, the bronchoprotective effect of 1.25 mg of Xopenex was comparable to that of 2.5 mg of racemic albuterol sulfate. At 180 minutes after administration, 1.25 mg of (S)-albuterol had no bronchoprotective effect.

In a clinical study in adults with mild-to-moderate asthma, comparable efficacy (as measured by change from baseline FEV) and safety (as measured by heart rate, blood pressure, ECG, serum potassium, and tremor) were demonstrated after a cumulative dose of 5 mg of Xopenex Inhalation Solution (four consecutive doses of 1.25 mg administered every 30 minutes) and 10 mg of racemic albuterol sulfate inhalation solution (four consecutive doses of 2.5 mg administered every 30 minutes).

Non-Clinical Toxicology
Xopenex (levalbuterol HCl) Inhalation Solution is contraindicated in patients with a history of hypersensitivity to levalbuterol HCl or racemic albuterol.

When given concurrently the following drugs may interact with thiazide diuretics.

Levalbuterol HCl, like all sympathomimetic amines, should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, hypertension, and cardiac arrhythmias; in patients with convulsive disorders, hyperthyroidism, or diabetes mellitus; and in patients who are unusually responsive to sympathomimetic amines. Clinically significant changes in systolic and diastolic blood pressure have been seen in individual patients and could be expected to occur in some patients after the use of any beta-adrenergic bronchodilator.

Large doses of intravenous racemic albuterol have been reported to aggravate preexisting diabetes mellitus and ketoacidosis. As with other beta-adrenergic agonist medications, levalbuterol may produce significant hypokalemia in some patients, possibly through intracellular shunting, which has the potential to produce adverse cardiovascular effects. The decrease is usually transient, not requiring supplementation.

See illustrated .

The action of Xopenex (levalbuterol HCl) Inhalation Solution may last up to 8 hours. Xopenex Inhalation Solution should not be used more frequently than recommended. Do not increase the dose or frequency of dosing of Xopenex Inhalation Solution without consulting your physician. If you find that treatment with Xopenex Inhalation Solution becomes less effective for symptomatic relief, your symptoms become worse, and/or you need to use the product more frequently than usual, you should seek medical attention immediately. While you are taking Xopenex Inhalation Solution, other inhaled drugs and asthma medications should be taken only as directed by your physician. Common adverse effects include palpitations, chest pain, rapid heart rate, headache, dizziness, and tremor or nervousness. If you are pregnant or nursing, contact your physician about the use of Xopenex Inhalation Solution.

Effective and safe use of Xopenex Inhalation Solution requires consideration of the following information in addition to that provided under Patient's Instructions for Use:

Xopenex Inhalation Solution single-use low-density polyethylene (LDPE) vials should be protected from light and excessive heat. Store in the protective foil pouch between 20°C and 25°C (68°F and 77°F) [see USP Controlled Room Temperature]. Do not use after the expiration date stamped on the container. Open the foil pouch just prior to administration. Once the foil pouch is opened, the contents of the vial should be used immediately. Discard any vial if the solution is not colorless. Xopenex (levalbuterol HCl) Inhalation Solution Concentrate should be diluted with sterile normal saline before administration by nebulization.

The drug compatibility (physical and chemical), efficacy, and safety of Xopenex Inhalation Solution when mixed with other drugs in a nebulizer have not been established.

Other short-acting sympathomimetic aerosol bronchodilators or epinephrine should be used with caution with levalbuterol. If additional adrenergic drugs are to be administered by any route, they should be used with caution to avoid deleterious cardiovascular effects.

No carcinogenesis or impairment of fertility studies have been carried out with levalbuterol HCl alone. However, racemic albuterol sulfate has been evaluated for its carcinogenic potential and ability to impair fertility.

In a 2-year study in Sprague-Dawley rats, racemic albuterol sulfate caused a significant dose-related increase in the incidence of benign leiomyomas of the mesovarium at and above dietary doses of 2 mg/kg (approximately 2 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults and children on a mg/m basis). In another study, this effect was blocked by the coadministration of propranolol, a nonselective beta-adrenergic antagonist. In an 18-month study in CD-1 mice, racemic albuterol sulfate showed no evidence of tumorigenicity at dietary doses up to 500 mg/kg (approximately 260 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults and children on a mg/m basis). In a 22-month study in the Golden hamster, racemic albuterol sulfate showed no evidence of tumorigenicity at dietary doses up to 50 mg/kg (approximately 35 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults and children on a mg/m basis).

Levalbuterol HCl was not mutagenic in the Ames test or the CHO/HPRT Mammalian Forward Gene Mutation Assay. Although levalbuterol HCl has not been tested for clastogenicity, racemic albuterol sulfate was not clastogenic in a human peripheral lymphocyte assay or in an AH1 strain mouse micronucleus assay. Reproduction studies in rats using racemic albuterol sulfate demonstrated no evidence of impaired fertility at oral doses up to 50 mg/kg (approximately 55 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults on a mg/m basis).

A reproduction study in New Zealand White rabbits demonstrated that levalbuterol HCl was not teratogenic when administered orally at doses up to 25 mg/kg (approximately 110 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults on a mg/m basis). However, racemic albuterol sulfate has been shown to be teratogenic in mice and rabbits. A study in CD-1 mice given racemic albuterol sulfate subcutaneously showed cleft palate formation in 5 of 111 (4.5%) fetuses at 0.25 mg/kg (less than the maximum recommended daily inhalation dose of levalbuterol HCl for adults on a mg/m basis) and in 10 of 108 (9.3%) fetuses at 2.5 mg/kg (approximately equal to the maximum recommended daily inhalation dose of levalbuterol HCl for adults on a mg/m basis). The drug did not induce cleft palate formation when administered subcutaneously at a dose of 0.025 mg/kg (less than the maximum recommended daily inhalation dose of levalbuterol HCl for adults on a mg/m basis). Cleft palate also occurred in 22 of 72 (30.5%) fetuses from females treated subcutaneously with 2.5 mg/kg of isoproterenol (positive control).

A reproduction study in Stride Dutch rabbits revealed cranioschisis in 7 of 19 (37%) fetuses when racemic albuterol sulfate was administered orally at a dose of 50 mg/kg (approximately 110 times the maximum recommended daily inhalation dose of levalbuterol HCl for adults on a mg/m basis).

A study in which pregnant rats were dosed with radiolabeled racemic albuterol sulfate demonstrated that drug-related material is transferred from the maternal circulation to the fetus.

There are no adequate and well-controlled studies of Xopenex Inhalation Solution in pregnant women. Because animal reproduction studies are not always predictive of human response, Xopenex Inhalation Solution should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

During marketing experience of racemic albuterol, various congenital anomalies, including cleft palate and limb defects, have been rarely reported in the offspring of patients being treated with racemic albuterol. Some of the mothers were taking multiple medications during their pregnancies. No consistent pattern of defects can be discerned, and a relationship between racemic albuterol use and congenital anomalies has not been established.

Because of the potential for beta-adrenergic agonists to interfere with uterine contractility, the use of Xopenex Inhalation Solution for the treatment of bronchospasm during labor should be restricted to those patients in whom the benefits clearly outweigh the risk.

Levalbuterol HCl has not been approved for the management of preterm labor. The benefit:risk ratio when levalbuterol HCl is administered for tocolysis has not been established. Serious adverse reactions, including maternal pulmonary edema, have been reported during or following treatment of premature labor with beta-agonists, including racemic albuterol.

Plasma levels of levalbuterol after inhalation of therapeutic doses are very low in humans, but it is not known whether levalbuterol is excreted in human milk.

Because of the potential for tumorigenicity shown for racemic albuterol in animal studies and the lack of experience with the use of Xopenex Inhalation Solution by nursing mothers, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. Caution should be exercised when Xopenex Inhalation Solution is administered to a nursing woman.

The safety and efficacy of Xopenex (levalbuterol HCl) Inhalation Solution have been established in pediatric patients 6 years of age and older in one adequate and well-controlled clinical trial (see and ). Use of Xopenex in children is also supported by evidence from adequate and well-controlled studies of Xopenex in adults, considering that the pathophysiology and the drug's exposure level and effects in pediatric and adult patients are substantially similar. Safety and effectiveness of Xopenex in pediatric patients below the age of 6 years have not been established.

Data on the use of Xopenex in patients 65 years of age and older are very limited. A very small number of patients 65 years of age and older were treated with Xopenex Inhalation Solution in a 4-week clinical study (see ) (n=2 for 0.63 mg and n=3 for 1.25 mg). In these patients, bronchodilation was observed after the first dose on day 1 and after 4 weeks of treatment. There are insufficient data to determine if the safety and efficacy of Xopenex Inhalation Solution are different in patients less than 65 years of age and patients 65 years of age and older. In general, patients 65 years of age and older should be started at a dose of 0.63 mg of Xopenex Inhalation Solution. If clinically warranted due to insufficient bronchodilator response, the dose of Xopenex Inhalation Solution may be increased in elderly patients as tolerated, in conjunction with frequent clinical and laboratory monitoring, to the maximum recommended daily dose (see ).

Adverse events reported in ≥2% of patients receiving Xopenex Inhalation Solution or racemic albuterol and more frequently than in patients receiving placebo in a 4-week, controlled clinical trial are listed in .

The incidence of certain systemic beta-adrenergic adverse effects (e.g., tremor, nervousness) was slightly less in the Xopenex 0.63 mg group compared with the other active treatment groups. The clinical significance of these small differences is unknown.

Changes in heart rate 15 minutes after drug administration and in plasma glucose and potassium 1 hour after drug administration on day 1 and day 29 were clinically comparable in the Xopenex 1.25 mg and racemic albuterol 2.5 mg groups (see ). Changes in heart rate and plasma glucose were slightly less in the Xopenex 0.63 mg group compared with the other active treatment groups (see ). The clinical significance of these small differences is unknown. After 4 weeks, effects on heart rate, plasma glucose, and plasma potassium were generally diminished compared with day 1 in all active treatment groups.

No other clinically relevant laboratory abnormalities related to administration of Xopenex Inhalation Solution were observed in this study.

In the clinical trials, a slightly greater number of serious adverse events, discontinuations due to adverse events, and clinically significant ECG changes were reported in patients who received Xopenex 1.25 mg compared with the other active treatment groups.

The following adverse events, considered potentially related to Xopenex, occurred in less than 2% of the 292 subjects who received Xopenex and more frequently than in patients who received placebo in any clinical trial:

The following events, considered potentially related to Xopenex, occurred in less than 2% of the treated subjects but at a frequency less than in patients who received placebo: asthma exacerbation, cough increased, wheezing, sweating, and vomiting.

×

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

×

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
×

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
×

Tips

Tips

×

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).