Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Altabax
Overview
What is Altabax?
ALTABAX contains retapamulin, a semisynthetic pleuromutilin antibiotic. The chemical name of retapamulin is acetic acid, [[(3-)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl]thio]-, (3a,4,5,6,8,9,9a,10)-6-ethenyldecahydro-5-hydroxy-4,6,9,10-tetramethyl-1-oxo-3a,9-propano-3a-cyclopentacycloocten-8-yl ester. Retapamulin, a white to pale-yellow crystalline solid, has a molecular formula of CHNOS, and a molecular weight of 517.78. The chemical structure is:
Each gram of ointment for dermatological use contains 10 mg of retapamulin in white petrolatum.
What does Altabax look like?


What are the available doses of Altabax?
10 mg retapamulin/1g of ointment in 5, 10, 15, and 30 gram tubes
What should I talk to my health care provider before I take Altabax?
8.1 Pregnancy
Pregnancy Category B
Retapamulin was given as a continuous intravenous infusion to pregnant rabbits at dosages of 2.4, 7.2, or 24 mg/kg/day from day 7 to 19 of gestation. Maternal toxicity (decreased body weight gain, food consumption, and abortions) was demonstrated at dosages ≥7.2 mg/kg/day (8-fold the estimated maximum achievable human exposure, based on AUC, at 7.2 mg/kg/day). There was no treatment-related effect on embryo-fetal development.
There are no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, ALTABAX should be used in pregnancy only when the potential benefits outweigh the potential risk.
8.3 Nursing Mothers
It is not known whether retapamulin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when ALTABAX is administered to a nursing woman. The safe use of retapamulin during breast-feeding has not been established.
8.4 Pediatric Use
The safety and effectiveness of ALTABAX in the treatment of impetigo have been established in pediatric patients 9 months to 17 years of age. Use of ALTABAX in pediatric patients is supported by evidence from adequate and well-controlled studies of ALTABAX in which 588 pediatric patients received at least one dose of retapamulin ointment, 1% The magnitude of efficacy and the safety profile of ALTABAX in pediatric patients 9 months and older were similar to those in adults.
The safety and effectiveness of ALTABAX in pediatric patients younger than 9 months of age have not been established.
8.5 Geriatric Use
Of the total number of patients in the adequate and well-controlled studies of ALTABAX, 234 patients were 65 years of age and older, of whom 114 patients were 75 years of age and older. No overall differences in effectiveness or safety were observed between these patients and younger adult patients.
How should I use Altabax?
ALTABAX is indicated for use in adults and pediatric patients aged 9 months and older for the topical treatment of impetigo (up to 100 cm in total area in adults or 2% total body surface area in pediatric patients aged 9 months or older) due to (methicillin-susceptible isolates only) or
.
To reduce the development of drug-resistant bacteria and maintain the effectiveness of ALTABAX and other antibacterial drugs, ALTABAX should
A thin layer of ALTABAX should be applied to the affected area (up to 100 cm in total area in adults or 2% total body surface area in pediatric patients aged 9 months or older) twice daily for 5 days. The treated area may be covered with a sterile bandage or gauze dressing if desired .
What interacts with Altabax?
Sorry No Records found
What are the warnings of Altabax?
Sorry No Records found
What are the precautions of Altabax?
Sorry No Records found
What are the side effects of Altabax?
Sorry No records found
What should I look out for while using Altabax?
None.
What might happen if I take too much Altabax?
Overdosage with ALTABAX has not been reported. Any signs or symptoms of overdose, either topically or by accidental ingestion, should be treated symptomatically consistent with good clinical practice.
There is no known antidote for overdoses of ALTABAX.
How should I store and handle Altabax?
ALTABAX is supplied in 10 gram tubes.NDC 21695-644-10 (10 gram tube)Store at 25°C (77°F) with excursions permitted to 15°-30°C (59°-86°F).ALTABAX is supplied in 10 gram tubes.NDC 21695-644-10 (10 gram tube)Store at 25°C (77°F) with excursions permitted to 15°-30°C (59°-86°F).ALTABAX is supplied in 10 gram tubes.NDC 21695-644-10 (10 gram tube)Store at 25°C (77°F) with excursions permitted to 15°-30°C (59°-86°F).
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
12.1 Mechanism of Action
ALTABAX is an antibacterial agent .
12.2 Pharmacodynamics
In post-hoc analyses of manually over-read 12-lead ECGs from healthy subjects (N = 103), no significant effects on QT/QTc intervals were observed after topical application of retapamulin ointment on intact and abraded skin. Due to the low systemic exposure to retapamulin with topical application, QT prolongation in patients is unlikely .
12.3 Pharmacokinetics
Absorption
In a study of healthy adult subjects, retapamulin ointment, 1% was applied once daily to intact skin (800 cm surface area) and to abraded skin (200 cmsurface area) under occlusion for up to 7 days. Systemic exposure following topical application of retapamulin through intact and abraded skin was low. Three percent of blood samples obtained on Day 1 after topical application to intact skin had measurable retapamulin concentrations (lower limit of quantitation 0.5 ng/mL); thus C values on Day 1 could not be determined. Eighty-two percent of blood samples obtained on Day 7 after topical application to intact skin and 97% and 100% of blood samples obtained after topical application to abraded skin on Days 1 and 7, respectively, had measurable retapamulin concentrations. The median C value in plasma after application to 800 cm of intact skin was 3.5 ng/mL on Day 7 (range 1.2 to 7.8 ng/mL). The median C value in plasma after application to 200 cmof abraded skin was 11.7 ng/mL on Day 1 (range 5.6 to 22.1 ng/mL) and 9.0 ng/mL on Day 7 (range 6.7 to 12.8 ng/mL).
Plasma samples were obtained from 380 adult patients and 136 pediatric patients (aged 2-17 years) who were receiving topical treatment with ALTABAX topically twice daily. Eleven percent had measurable retapamulin concentrations (lower limit of quantitation 0.5 ng/mL), of which the median concentration was 0.8 ng/mL. The maximum measured retapamulin concentration in adults was 10.7 ng/mL and in pediatric patients was 18.5 ng/mL.
Distribution
Retapamulin is approximately 94% bound to human plasma proteins, and the protein binding is independent of concentration. The apparent volume of distribution of retapamulin has not been determined in humans.
Metabolism
In vitro studies with human hepatocytes showed that the main routes of metabolism were mono-oxygenation and di-oxygenation. In vitro studies with human liver microsomes demonstrated that retapamulin is extensively metabolized to numerous metabolites, of which the predominant routes of metabolism were mono-oxygenation and N-demethylation. The major enzyme responsible for metabolism of retapamulin in human liver microsomes was cytochrome P450 3A4 (CYP3A4).
Elimination
Retapamulin elimination in humans has not been investigated due to low systemic exposure after topical application.
12.4 Microbiology
Retapamulin is a semisynthetic derivative of the compound pleuromutilin, which is isolated through fermentation from (formerly ). In vitro activity of retapamulin against isolates of as well as has been demonstrated.
Antimicrobial Mechanism of Action
Retapamulin selectively inhibits bacterial protein synthesis by interacting at a site on the 50S subunit of the bacterial ribosome through an interaction that is different from that of other antibiotics. This binding site involves ribosomal protein L3 and is in the region of the ribosomal P site and peptidyl transferase center. By virtue of binding to this site, pleuromutilins inhibit peptidyl transfer, block P-site interactions, and prevent the normal formation of active 50S ribosomal subunits. Retapamulin is bacteriostatic against and at the retapamulin in vitro minimum inhibitory concentration (MIC) for these organisms. At concentrations 1,000x the in vitro MIC, retapamulin is bactericidal against these same organisms. Retapamulin demonstrates no in vitrotarget-specific cross-resistance with other classes of antibiotics.
Mechanisms of Decreased Susceptibility to Retapamulin
In vitro, 2 mechanisms that cause reduced susceptibility to retapamulin have been identified, specifically, mutations in ribosomal protein L3 or the presence of an efflux mechanism. Decreased susceptibility of to retapamulin (highest retapamulin MIC was 2 mcg/mL) develops slowly in vitro via multistep mutations in L3 after serial passage in sub-inhibitory concentrations of retapamulin. There was no apparent treatment-associated reduction in susceptibility to retapamulin in the Phase 3 clinical program. The clinical significance of these findings is not known.
Other
Based on in vitro broth microdilution susceptibility testing, no differences were observed in susceptibility of to retapamulin whether the isolates were methicillin-resistant or methicillin-susceptible. Retapamulin susceptibility did not correlate with clinical success rates in patients with methicillin-resistant . The reason for this is not known but may have been influenced by the presence of particular strains of possessing certain virulence factors, such as Panton-Valentine Leukocidin (PVL). In the case of treatment failure associated with (regardless of methicillin susceptibility), the presence of strains possessing additional virulence factors (such as PVL) should be considered.
Retapamulin has been shown to be active against the following microorganisms, both in vitro and in clinical trials .
Aerobic and Facultative Gram-Positive Bacteria
Staphylococcus aureus
Streptococcus pyogenes
Susceptibility Testing
The clinical microbiology laboratory should provide cumulative results of the in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting the most effective antimicrobial.
Susceptibility Testing Techniques
Dilution Techniques
Quantitative methods can be used to determine the minimum inhibitory concentration (MIC) of retapamulin that will inhibit the growth of the bacteria being tested. The MIC provides an estimate of the susceptibility of bacteria to retapamulin. The MIC should be determined using a standardized procedure. Standardized procedures are based on a dilution method (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of retapamulin powder.
Diffusion Techniques
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 2 mcg of retapamulin to test the susceptibility of microorganisms to retapamulin.
Susceptibility Test Interpretive Criteria
In vitro susceptibility test interpretive criteria for retapamulin have not been determined for this topical antimicrobial. The relation of the in vitro MIC and/or disk diffusion susceptibility test results to clinical efficacy of retapamulin against the bacteria tested should be monitored.
Quality Control Parameters for Susceptibility Testing
In vitro susceptibility test quality control parameters were developed for retapamulin so that laboratories that test the susceptibility of bacterial isolates to retapamulin can determine if the susceptibility test is performing correctly. Standardized dilution techniques and diffusion methods require the use of laboratory control microorganisms to monitor the technical aspects of the laboratory procedures. Standard retapamulin powder should provide the following MIC and a 2 mcg retapamulin disk should produce the following zone diameters with the indicated quality control strains in Table 3.
NA = Not applicable.
a
b
Non-Clinical Toxicology
None.This drug may enhance the effects of: other narcotic analgesics, alcohol, general anesthetics, tranquilizers such as chlordiazepoxide, sedative-hypnotics or other CNS depressants, causing increased CNS depression.
5.1 Local Irritation
In the event of sensitization or severe local irritation from ALTABAX, usage should be discontinued, the ointment wiped off, and appropriate alternative therapy for the infection instituted .
5.2 Not for Systemic or Mucosal Use
ALTABAX is not intended for ingestion or for oral, intranasal, ophthalmic, or intravaginal use. ALTABAX has not been evaluated for use on mucosal surfaces .
5.3 Potential for Microbial Overgrowth
The use of antibiotics may promote the selection of nonsusceptible organisms. Should superinfection occur during therapy, appropriate measures should be taken.
Prescribing ALTABAX in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.
6.1 Clinical Studies Experience
The safety profile of ALTABAX was assessed in 2,115 adult and pediatric patients ≥9 months who used at least one dose from a 5-day, twice a day regimen of retapamulin ointment. Control groups included 819 adult and pediatric patients who used at least one dose of the active control (oral cephalexin), 172 patients who used an active topical comparator (not available in the US), and 71 patients who used placebo.
Adverse events rated by investigators as drug-related occurred in 5.5% (116/2,115) of patients treated with retapamulin ointment, 6.6% (54/819) of patients receiving cephalexin, and 2.8% (2/71) of patients receiving placebo. The most common drug-related adverse events (≥1% of patients) were application site irritation (1.4%) in the retapamulin group, diarrhea (1.7%) in the cephalexin group, and application site pruritus (1.4%) and application site paresthesia (1.4%) in the placebo group.
Because clinical studies are conducted under varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice. The adverse reaction information from the clinical studies does, however, provide a basis for identifying the adverse events that appear to be related to drug use and for approximating rates.
Adults
The adverse events, regardless of attribution, reported in at least 1% of adults (18 years of age and older) who received ALTABAX are listed in Table 1.
Pediatrics
The adverse events, regardless of attribution, reported in at least 1% of pediatric patients aged 9 months to 17 years who received ALTABAX are listed in Table 2.
Other Adverse Events
Application site pain, erythema, and contact dermatitis were reported in less than 1% of patients in clinical studies.
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).