Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Avelox ABC Pack

&times

Overview

What is Avelox ABC Pack?

AVELOX (moxifloxacin hydrochloride) is a synthetic broad spectrum antibacterial agent and is available as AVELOX Tablets for oral administration and as AVELOX I.V. for intravenous administration. Moxifloxacin, a fluoroquinolone, is available as the monohydrochloride salt of 1-cyclopropyl-7-[(S,S)-2,8-diazabicyclo[4.3.0]non-8-yl]-6-fluoro-8-methoxy-1,4-dihydro-4-oxo-3 quinoline carboxylic acid. It is a slightly yellow to yellow crystalline substance with a molecular weight of 437.9. Its empirical formula is CHFNO*HCl and its chemical structure is as follows:

   

AVELOX Tablets are available as film-coated tablets containing moxifloxacin hydrochloride (equivalent to 400 mg moxifloxacin). The inactive ingredients are microcrystalline cellulose, lactose monohydrate, croscarmellose sodium, magnesium stearate, hypromellose, titanium dioxide, polyethylene glycol and ferric oxide.

AVELOX I.V. is available in ready-to-use 250 mL latex-free flexibags as a sterile, preservative free, 0.8% sodium chloride aqueous solution of moxifloxacin hydrochloride (containing 400 mg moxifloxacin) with pH ranging from 4.1 to 4.6. The appearance of the intravenous solution is yellow. The color does not affect, nor is it indicative of, product stability. The inactive ingredients are sodium chloride, USP, Water for Injection, USP, and may include hydrochloric acid and/or sodium hydroxide for pH adjustment. AVELOX I.V. contains approximately 34.2 mEq (787 mg) of sodium in 250 mL.



What does Avelox ABC Pack look like?



What are the available doses of Avelox ABC Pack?

Sorry No records found.

What should I talk to my health care provider before I take Avelox ABC Pack?

Following oral administration of 400 mg moxifloxacin for 10 days in 16 elderly (8 male; 8 female) and 17 young (8 male; 9 female) healthy volunteers, there were no age-related changes in moxifloxacin pharmacokinetics. In 16 healthy male volunteers (8 young; 8 elderly) given a single 200 mg dose of oral moxifloxacin, the extent of systemic exposure (AUC and C) was not statistically different between young and elderly males and elimination half-life was unchanged. No dosage adjustment is necessary based on age. In large phase III studies, the concentrations around the time of the end of the infusion in elderly patients following intravenous infusion of 400 mg were similar to those observed in young patients.

The pharmacokinetics of moxifloxacin in pediatric subjects have not been studied.

Following oral administration of 400 mg moxifloxacin daily for 10 days to 23 healthy males (19-75 years) and 24 healthy females (19-70 years), the mean AUC and C were 8% and 16% higher, respectively, in females compared to males. There are no significant differences in moxifloxacin pharmacokinetics between male and female subjects when differences in body weight are taken into consideration.

A 400 mg single dose study was conducted in 18 young males and females. The comparison of moxifloxacin pharmacokinetics in this study (9 young females and 9 young males) showed no differences in AUC or C due to gender. Dosage adjustments based on gender are not necessary.

Steady-state moxifloxacin pharmacokinetics in male Japanese subjects were similar to those determined in Caucasians, with a mean C of 4.1 µg/mL, an AUC of 47 µg•h/mL, and an elimination half-life of 14 hours, following 400 mg p.o. daily.

The pharmacokinetic parameters of moxifloxacin are not significantly altered in mild, moderate, severe, or end-stage renal disease. No dosage adjustment is necessary in patients with renal impairment, including those patients requiring hemodialysis (HD) or continuous ambulatory peritoneal dialysis (CAPD).

In a single oral dose study of 24 patients with varying degrees of renal function from normal to severely impaired, the mean peak concentrations (C) of moxifloxacin were reduced by 21% and 28% in the patients with moderate (CL≥ 30 and ≤ 60 mL/min) and severe (CLless than30 mL/min) renal impairment, respectively. The mean systemic exposure (AUC) in these patients was increased by 13%. In the moderate and severe renally impaired patients, the mean AUC for the sulfate conjugate (M1) increased by 1.7-fold (ranging up to 2.8-fold) and mean AUC and C for the glucuronide conjugate (M2) increased by 2.8-fold (ranging up to 4.8-fold) and 1.4-fold (ranging up to 2.5-fold), respectively.

The pharmacokinetics of single dose and multiple dose moxifloxacin were studied in patients with CLless than 20 mL/min on either hemodialysis or continuous ambulatory peritoneal dialysis (8 HD, 8 CAPD). Following a single 400 mg oral dose, the AUC of moxifloxacin in these HD and CAPD patients did not vary significantly from the AUC generally found in healthy volunteers. C values of moxifloxacin were reduced by about 45% and 33% in HD and CAPD patients, respectively, compared to healthy, historical controls. The exposure (AUC) to the sulfate conjugate (M1) increased by 1.4- to 1.5-fold in these patients. The mean AUC of the glucuronide conjugate (M2) increased by a factor of 7.5, whereas the mean C values of the glucuronide conjugate (M2) increased by a factor of 2.5 to 3, compared to healthy subjects. The sulfate and the glucuronide conjugates of moxifloxacin are not microbiologically active, and the clinical implication of increased exposure to these metabolites in patients with renal disease including those undergoing HD and CAPD has not been studied.

Oral administration of 400 mg QD moxifloxacin for 7 days to patients on HD or CAPD produced mean systemic exposure (AUC) to moxifloxacin similar to that generally seen in healthy volunteers. Steady-state C values were about 22% lower in HD patients but were comparable between CAPD patients and healthy volunteers. Both HD and CAPD removed only small amounts of moxifloxacin from the body (approximately 9% by HD, and 3% by CAPD). HD and CAPD also removed about 4% and 2% of the glucuronide metabolite (M2), respectively.

No dosage adjustment is recommended for mild, moderate, or severe hepatic insufficiency (Child-Pugh Classes A, B, or C). However, due to metabolic disturbances associated with hepatic insufficiency, which may lead to QT prolongation, moxifloxacin should be used with caution in these patients. (See and .)

In 400 mg single oral dose studies in 6 patients with mild (Child-Pugh Class A) and 10 patients with moderate (Child-Pugh Class B) hepatic insufficiency, moxifloxacin mean systemic exposure (AUC) was 78% and 102%, respectively, of 18 healthy controls and mean peak concentration (C)  was 79% and 84% of controls.

The mean AUC of the sulfate conjugate of moxifloxacin (M1) increased by 3.9-fold (ranging up to 5.9-fold) and 5.7-fold (ranging up to 8-fold) in the mild and moderate groups, respectively. The mean Cof M1 increased by approximately 3-fold in both groups (ranging up to 4.7- and 3.9-fold). The mean AUC of the glucuronide conjugate of moxifloxacin (M2) increased by 1.5-fold (ranging up to 2.5-fold) in both groups. The mean Cof M2 increased by 1.6- and 1.3-fold (ranging up to 2.7- and 2.1-fold), respectively. The clinical significance of increased exposure to the sulfate and glucuronide conjugates has not been studied. In a subset of patients participating in a clinical trial, the plasma concentrations of moxifloxacin and metabolites determined approximately at the moxifloxacin T following the first intravenous or oral moxifloxacin dose in the Child-Pugh Class C patients (n=10) were similar to those in the Child-Pugh Class A/B patients (n=5), and also similar to those observed in healthy volunteer studies.

A study of the skin response to ultraviolet (UVA and UVB) and visible radiation conducted in 32 healthy volunteers (8 per group) demonstrated that moxifloxacin does not show phototoxicity in comparison to placebo. The minimum erythematous dose (MED) was measured before and after treatment with moxifloxacin (200 mg or 400 mg once daily), lomefloxacin (400 mg once daily), or placebo. In this study, the MED measured for both doses of moxifloxacin were not significantly different from placebo, while lomefloxacin significantly lowered the MED. (See .)

It is difficult to ascribe relative photosensitivity/phototoxicity among various fluoroquinolones during actual patient use because other factors play a role in determining a subject’s susceptibility to this adverse event such as: a patient’s skin pigmentation, frequency and duration of sun and artificial ultraviolet light (UV) exposure, wearing of sunscreen and protective clothing, the use of other concomitant drugs and the dosage and duration of fluoroquinolone therapy (See and .

The potential for pharmacokinetic drug interactions between moxifloxacin and itraconazole, theophylline, warfarin, digoxin, atenolol, probenecid, morphine, oral contraceptives, ranitidine, glyburide, calcium, iron, and antacids has been evaluated. There was no clinically significant effect of moxifloxacin on itraconazole, theophylline, warfarin, digoxin, atenolol, oral contraceptives, or glyburide kinetics. Itraconazole, theophylline, warfarin, digoxin, probenecid, morphine, ranitidine, and calcium did not significantly affect the pharmacokinetics of moxifloxacin. These results and the data from studies suggest that moxifloxacin is unlikely to significantly alter the metabolic clearance of drugs metabolized by CYP3A4, CYP2D6, CYP2C9, CYP2C19, or CYP1A2 enzymes.

As with all other quinolones, iron and antacids significantly reduced bioavailability of moxifloxacin.

 In a study involving 11 healthy volunteers, there was no significant effect of itraconazole (200 mg once daily for 9 days), a potent inhibitor of cytochrome P4503A4, on the pharmacokinetics of moxifloxacin (a single 400 mg dose given on the 7 day of itraconazole dosing). In addition, moxifloxacin was shown not to affect the pharmacokinetics of itraconazole.

 No significant effect of moxifloxacin (200 mg every twelve hours for 3 days) on the pharmacokinetics of theophylline (400 mg every twelve hours for 3 days) was detected in a study involving 12 healthy volunteers. In addition, theophylline was not shown to affect the pharmacokinetics of moxifloxacin. The effect of co-administration of a 400 mg dose of moxifloxacin with theophylline has not been studied, but it is not expected to be clinically significant based on metabolic data showing that moxifloxacin does not inhibit the CYP1A2 isoenzyme.

 No significant effect of moxifloxacin (400 mg once daily for eight days) on the pharmacokinetics of R- and S-warfarin (25 mg single dose of warfarin sodium on the fifth day) was detected in a study involving 24 healthy volunteers. No significant change in prothrombin time was observed. (See .)

 No significant effect of moxifloxacin (400 mg once daily for two days) on digoxin (0.6 mg as a single dose) AUC was detected in a study involving 12 healthy volunteers. The mean digoxin C increased by about 50% during the distribution phase of digoxin. This transient increase in digoxin C is not viewed to be clinically significant. Moxifloxacin pharmacokinetics were similar in the presence or absence of digoxin. No dosage adjustment for moxifloxacin or digoxin is required when these drugs are administered concomitantly.

 In a crossover study involving 24 healthy volunteers (12 male; 12 female), the mean atenolol AUC following a single oral dose of 50 mg atenolol with placebo was similar to that observed when atenolol was given concomitantly with a single 400 mg oral dose of moxifloxacin. The mean C of single dose atenolol decreased by about 10% following co-administration with a single dose of moxifloxacin.

 No significant effect of morphine sulfate (a single 10 mg intramuscular dose) on the mean AUC and C of moxifloxacin (400 mg single dose) was observed in a study of 20 healthy male and female volunteers.

 A placebo-controlled study in 29 healthy female subjects showed that moxifloxacin 400 mg daily for 7 days did not interfere with the hormonal suppression of oral contraception with 0.15 mg levonorgestrel/0.03 mg ethinylestradiol (as measured by serum progesterone, FSH, estradiol, and LH), or with the pharmacokinetics of the administered contraceptive agents.

 Probenecid (500 mg twice daily for two days) did not alter the renal clearance and total amount of moxifloxacin (400 mg single dose) excreted renally in a study of 12 healthy volunteers.

 No significant effect of ranitidine (150 mg twice daily for three days as pretreatment) on the pharmacokinetics of moxifloxacin (400 mg single dose) was detected in a study involving 10 healthy volunteers.

In diabetics, glyburide (2.5 mg once daily for two weeks pretreatment and for five days concurrently) mean AUC and C were 12% and 21% lower, respectively, when taken with moxifloxacin (400 mg once daily for five days) in comparison to placebo. Nonetheless, blood glucose levels were decreased slightly in patients taking glyburide and moxifloxacin in comparison to those taking glyburide alone, suggesting no interference by moxifloxacin on the activity of glyburide. These interaction results are not viewed as clinically significant.

 Twelve healthy volunteers were administered concomitant moxifloxacin (single 400 mg dose) and calcium (single dose of 500 mg Cadietary supplement) followed by an additional two doses of calcium 12 and 24 hours after moxifloxacin administration. Calcium had no significant effect on the mean AUC of moxifloxacin. The mean C was slightly reduced and the time to maximum plasma concentration was prolonged when moxifloxacin was given with calcium compared to when moxifloxacin was given alone (2.5 hours versus 0.9 hours). These differences are not considered to be clinically significant.

When moxifloxacin (single 400 mg tablet dose) was administered two hours before, concomitantly, or 4 hours after an aluminum/magnesium-containing antacid (900 mg aluminum hydroxide and 600 mg magnesium hydroxide as a single oral dose) to 12 healthy volunteers there was a 26%, 60% and 23% reduction in the mean AUC of moxifloxacin, respectively. Moxifloxacin should be taken at least 4 hours before or 8 hours after antacids containing magnesium or aluminum, as well as sucralfate, metal cations such as iron, and multivitamin preparations with zinc, or VIDEX (didanosine) chewable/ buffered tablets or the pediatric powder for oral solution. (See and .)

Iron:

 Prolongation of the QT interval in the ECG has been observed in some patients receiving moxifloxacin. Following oral dosing with 400 mg of moxifloxacin the mean (± SD) change in QTc from the pre-dose value at the time of maximum drug concentration was 6 msec (± 26) (n = 787). Following a course of daily intravenous dosing (400 mg; 1 hour infusion each day) the mean change in QTc from the Day 1 pre-dose value was 9 msec (± 24) on Day 1 (n = 69) and 3 msec (± 29) on Day 3 (n = 290). (See .)

There is limited information available on the potential for a pharmacodynamic interaction in humans between moxifloxacin and other drugs that prolong the QTc interval of the electrocardiogram. Sotalol, a Class III antiarrhythmic, has been shown to further increase the QTc interval when combined with high doses of intravenous (I.V.) moxifloxacin in dogs. Therefore, moxifloxacin should be avoided with Class IA and Class III antiarrhythmics. (See , , and .)

How should I use Avelox ABC Pack?

AVELOX Tablets and I.V. are indicated for the treatment of adults (≥ 18 years of age) with infections caused by susceptible strains of the designated microorganisms in the conditions listed below. (See for specific recommendations. In addition, for I.V. use, see .)

Acute Bacterial Sinusitis

Streptococcus pneumoniae, Haemophilus influenzae

Moraxella catarrhalis

Acute Bacterial Exacerbation of Chronic Bronchitis

Streptococcus pneumoniae, Haemophilus influenzae, Haemophilus parainfluenzae,

Klebsiella pneumoniae,

Staphylococcus aureus,

Moraxella catarrhalis.

Community Acquired Pneumonia

Streptococcus pneumoniae

Haemophilus influenzae, Moraxella catarrhalis,

Staphylococcus aureus, Klebsiella pneumoniae, Mycoplasma pneumoniae,

Chlamydia pneumoniae

* MDRSP, Multi-drug resistant includes isolates previously known as PRSP (Penicillin-resistant ), and are strains resistant to two or more of the following antibiotics: penicillin (MIC ≥ 2 µg/mL), 2 generation cephalosporins (e.g., cefuroxime), macrolides, tetracyclines, and trimethoprim/sulfamethoxazole.

Uncomplicated Skin and Skin Structure Infections

Staphylococcus aureus

Streptococcus pyogenes

Complicated Intra-Abdominal Infections

Escherichia coli, Bacteroides fragilis, Streptococcus anginosus, Streptococcus constellatus, Enterococcus faecalis, Proteus mirabilis, Clostridium perfringens, Bacteroides thetaiotaomicron,

Peptostreptococcus species

Complicated Skin and Skin Structure Infections

Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae,

Enterobacter cloacae

Appropriate culture and susceptibility tests should be performed before treatment in order to isolate and identify organisms causing infection and to determine their susceptibility to moxifloxacin. Therapy with AVELOX may be initiated before results of these tests are known; once results become available, appropriate therapy should be continued.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of AVELOX and other antibacterial drugs, AVELOX should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

The dose of AVELOX is 400 mg (orally or as an intravenous infusion) once every 24 hours. The duration of therapy depends on the type of infection as described below.

For Complicated Intra-Abdominal Infections, therapy should usually be initiated with the intravenous formulation.

When switching from intravenous to oral dosage administration, no dosage adjustment is necessary. Patients whose therapy is started with AVELOX I.V. may be switched to AVELOX Tablets when clinically indicated at the discretion of the physician.

Oral doses of moxifloxacin should be administered at least 4 hours before or 8 hours after antacids containing magnesium or aluminum, as well as sucralfate, metal cations such as iron, and multivitamin preparations with zinc, or VIDEX (didanosine) chewable/buffered tablets or the pediatric powder for oral solution. (See and .)

No dosage adjustment is required in renally impaired patients, including those on either hemodialysis or continuous ambulatory peritoneal dialysis.

No dosage adjustment is recommended for mild, moderate, or severe hepatic insufficiency (Child-Pugh Classes A, B, or C). (See .)

AVELOX I.V. should be administered by INTRAVENOUS infusion only. It is not intended for intra-arterial, intramuscular, intrathecal, intraperitoneal, or subcutaneous administration.

AVELOX I.V. should be administered by intravenous infusion over a period of 60 minutes by direct infusion or through a Y-type intravenous infusion set which may already be in place. CAUTION: RAPID OR BOLUS INTRAVENOUS INFUSION MUST BE AVOIDED.

Since only limited data are available on the compatibility of moxifloxacin intravenous injection with other intravenous substances, additives or other medications should not be added to AVELOX I.V. or infused simultaneously through the same intravenous line. If the same intravenous line or a Y-type line is used for sequential infusion of other drugs, or if the “piggyback” method of administration is used, the line should be flushed before and after infusion of AVELOX I.V. with an infusion solution compatible with AVELOX I.V. as well as with other drug(s) administered via this common line.

NOTE


What interacts with Avelox ABC Pack?

Sorry No Records found


What are the warnings of Avelox ABC Pack?

Sorry No Records found


What are the precautions of Avelox ABC Pack?

Sorry No Records found


What are the side effects of Avelox ABC Pack?

Sorry No records found


What should I look out for while using Avelox ABC Pack?

Moxifloxacin is contraindicated in persons with a history of hypersensitivity to moxifloxacin or any member of the quinolone class of antimicrobial agents.

Tendinopathy and Tendon Rupture:

QT prolongation:

Pharmacokinetic studies between moxifloxacin and other drugs that prolong the QT interval such as cisapride, erythromycin, antipsychotics, and tricyclic antidepressants have not been performed. An additive effect of moxifloxacin and these drugs cannot be excluded; therefore caution should be exercised when moxifloxacin is given concurrently with these drugs. In premarketing clinical trials, the rate of cardiovascular adverse events was similar in 798 moxifloxacin and 702 comparator treated patients who received concomitant therapy with drugs known to prolong the QTc interval.

Moxifloxacin should be used with caution in patients with ongoing proarrhythmic conditions, such as clinically significant bradycardia, acute myocardial ischemia. The magnitude of QT prolongation may increase with increasing concentrations of the drug or increasing rates of infusion of the intravenous formulation. Therefore the recommended dose or infusion rate should not be exceeded. QT prolongation may lead to an increased risk for ventricular arrhythmias including torsade de pointes. No cardiovascular morbidity or mortality attributable to QTc prolongation occurred with moxifloxacin treatment in over 9,200 patients in controlled clinical studies, including 223 patients who were hypokalemic at the start of treatment, and there was no increase in mortality in over 18,000 moxifloxacin tablet treated patients in a post-marketing observational study in which ECGs were not performed. (See . For I.V. use, see and ) In addition, moxifloxacin should be used with caution in patients with mild, moderate, or severe liver cirrhosis. (See , .)

The oral administration of moxifloxacin caused lameness in immature dogs. Histopathological examination of the weight-bearing joints of these dogs revealed permanent lesions of the cartilage. Related quinolone-class drugs also produce erosions of cartilage of weight-bearing joints and other signs of arthropathy in immature animals of various species. (See .)

Convulsions have been reported in patients receiving quinolones. Quinolones may also cause central nervous system (CNS) events including: dizziness, confusion, tremors, hallucinations, depression, and, rarely, suicidal thoughts or acts. These reactions may occur following the first dose. If these reactions occur in patients receiving moxifloxacin, the drug should be discontinued and appropriate measures instituted. As with all quinolones, moxifloxacin should be used with caution in patients with known or suspected CNS disorders (e.g. severe cerebral arteriosclerosis, epilepsy) or in the presence of other risk factors that may predispose to seizures or lower the seizure threshold. (See , , and .)

Hypersensitivity reactions:

Other serious and sometimes fatal events, some due to hypersensitivity, and some due to uncertain etiology, have been reported rarely in patients receiving therapy with quinolones, including AVELOX. These events may be severe and generally occur following the administration of multiple doses. Clinical manifestations may include one or more of the following:

The drug should be discontinued immediately at the first appearance of a skin rash, jaundice, or any other sign of hypersensitivity and supportive measures instituted (See and ).

Clostridium difficile

C. difficile

C. difficile

C. difficile

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of , and surgical evaluation should be instituted as clinically indicated.

Peripheral neuropathy:


What might happen if I take too much Avelox ABC Pack?

Single oral overdoses up to 2.8 g were not associated with any serious adverse events. In the event of acute overdose, the stomach should be emptied and adequate hydration maintained. ECG monitoring is recommended due to the possibility of QT interval prolongation. The patient should be carefully observed and given supportive treatment. The administration of activated charcoal as soon as possible after oral overdose may prevent excessive increase of systemic moxifloxacin exposure. About 3% and 9% of the dose of moxifloxacin, as well as about 2% and 4.5% of its glucuronide metabolite are removed by continuous ambulatory peritoneal dialysis and hemodialysis, respectively.

Single oral moxifloxacin doses of 2000, 500, and 1500 mg/kg were lethal to rats, mice, and cynomolgus monkeys, respectively. The minimum lethal intravenous dose in mice and rats was 100 mg/kg. Toxic signs after administration of a single high dose of moxifloxacin to these animals included CNS and gastrointestinal effects such as decreased activity, somnolence, tremor, convulsions, vomiting and diarrhea.


How should I store and handle Avelox ABC Pack?

Store at 20°-25°C (68°-77°F) [see USP Controlled Room Temperature].Dispense in a tight, light-resistant container as defined in the USP/NF with a child-resistant closure.A Schedule CIII Narcotic.Store at 20°-25°C (68°-77°F) [see USP Controlled Room Temperature].Dispense in a tight, light-resistant container as defined in the USP/NF with a child-resistant closure.A Schedule CIII Narcotic.Store at 20°-25°C (68°-77°F) [see USP Controlled Room Temperature].Dispense in a tight, light-resistant container as defined in the USP/NF with a child-resistant closure.A Schedule CIII Narcotic.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.AVELOX (moxifloxacin hydrochloride) Tablets are available as oblong, dull red film-coated tablets containing 400 mg moxifloxacin.The tablet is coded with the word “BAYER” on one side and “M400” on the reverse side. Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. Avoid high humidity.AVELOX I.V. (moxifloxacin hydrochloride in sodium chloride injection) is available in ready-to-use 250 mL latex-free flexible bags containing 400 mg of moxifloxacin in 0.8% saline. NO FURTHER DILUTION OF THIS PREPARATION IS NECESSARY.Parenteral drug products should be inspected visually for particulate matter prior to administration. Samples containing visible particulates should not be used.Since the premix flexible containers are for single-use only, any unused portion should be discarded.Store at 25°C (77°F); excursions permitted to 15-30°C (59-86°F) [see USP Controlled Room Temperature]. DO NOT REFRIGERATE – PRODUCT PRECIPITATES UPON REFRIGERATION.


&times

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

Moxifloxacin, given as an oral tablet, is well absorbed from the gastrointestinal tract. The absolute bioavailability of moxifloxacin is approximately 90 percent. Co-administration with a high fat meal (i.e., 500 calories from fat) does not affect the absorption of moxifloxacin.

Consumption of 1 cup of yogurt with moxifloxacin does not significantly affect the extent or rate of systemic absorption (AUC).

Mean Steady-State Plasma Concentrations of Moxifloxacin Obtained With Once Daily Dosing of 400 mg Either Orally (n=10) or by I.V. Infusion (n=12)

Moxifloxacin is approximately 30-50% bound to serum proteins, independent of drug concentration. The volume of distribution of moxifloxacin ranges from 1.7 to 2.7 L/kg. Moxifloxacin is widely distributed throughout the body, with tissue concentrations often exceeding plasma concentrations. Moxifloxacin has been detected in the saliva, nasal and bronchial secretions, mucosa of the sinuses, skin blister fluid, subcutaneous tissue, skeletal muscle, and abdominal tissues and fluids following oral or intravenous administration of 400 mg. Moxifloxacin concentrations measured post-dose in various tissues and fluids following a 400 mg oral or I.V. dose are summarized in the following table. The rates of elimination of moxifloxacin from tissues generally parallel the elimination from plasma.

Approximately 52% of an oral or intravenous dose of moxifloxacin is metabolized via glucuronide and sulfate conjugation. The cytochrome P450 system is not involved in moxifloxacin metabolism, and is not affected by moxifloxacin. The sulfate conjugate (M1) accounts for approximately 38% of the dose, and is eliminated primarily in the feces. Approximately 14% of an oral or intravenous dose is converted to a glucuronide conjugate (M2), which is excreted exclusively in the urine. Peak plasma concentrations of M2 are approximately 40% those of the parent drug, while plasma concentrations of M1 are generally less than 10% those of moxifloxacin.

In vitro

Approximately 45% of an oral or intravenous dose of moxifloxacin is excreted as unchanged drug (~20% in urine and ~25% in feces). A total of 96% ± 4% of an oral dose is excreted as either unchanged drug or known metabolites. The mean (± SD) apparent total body clearance and renal clearance are 12 ± 2 L/hr and 2.6 ± 0.5 L/hr, respectively.

Non-Clinical Toxicology
Moxifloxacin is contraindicated in persons with a history of hypersensitivity to moxifloxacin or any member of the quinolone class of antimicrobial agents.

Tendinopathy and Tendon Rupture:

QT prolongation:

Pharmacokinetic studies between moxifloxacin and other drugs that prolong the QT interval such as cisapride, erythromycin, antipsychotics, and tricyclic antidepressants have not been performed. An additive effect of moxifloxacin and these drugs cannot be excluded; therefore caution should be exercised when moxifloxacin is given concurrently with these drugs. In premarketing clinical trials, the rate of cardiovascular adverse events was similar in 798 moxifloxacin and 702 comparator treated patients who received concomitant therapy with drugs known to prolong the QTc interval.

Moxifloxacin should be used with caution in patients with ongoing proarrhythmic conditions, such as clinically significant bradycardia, acute myocardial ischemia. The magnitude of QT prolongation may increase with increasing concentrations of the drug or increasing rates of infusion of the intravenous formulation. Therefore the recommended dose or infusion rate should not be exceeded. QT prolongation may lead to an increased risk for ventricular arrhythmias including torsade de pointes. No cardiovascular morbidity or mortality attributable to QTc prolongation occurred with moxifloxacin treatment in over 9,200 patients in controlled clinical studies, including 223 patients who were hypokalemic at the start of treatment, and there was no increase in mortality in over 18,000 moxifloxacin tablet treated patients in a post-marketing observational study in which ECGs were not performed. (See . For I.V. use, see and ) In addition, moxifloxacin should be used with caution in patients with mild, moderate, or severe liver cirrhosis. (See , .)

The oral administration of moxifloxacin caused lameness in immature dogs. Histopathological examination of the weight-bearing joints of these dogs revealed permanent lesions of the cartilage. Related quinolone-class drugs also produce erosions of cartilage of weight-bearing joints and other signs of arthropathy in immature animals of various species. (See .)

Convulsions have been reported in patients receiving quinolones. Quinolones may also cause central nervous system (CNS) events including: dizziness, confusion, tremors, hallucinations, depression, and, rarely, suicidal thoughts or acts. These reactions may occur following the first dose. If these reactions occur in patients receiving moxifloxacin, the drug should be discontinued and appropriate measures instituted. As with all quinolones, moxifloxacin should be used with caution in patients with known or suspected CNS disorders (e.g. severe cerebral arteriosclerosis, epilepsy) or in the presence of other risk factors that may predispose to seizures or lower the seizure threshold. (See , , and .)

Hypersensitivity reactions:

Other serious and sometimes fatal events, some due to hypersensitivity, and some due to uncertain etiology, have been reported rarely in patients receiving therapy with quinolones, including AVELOX. These events may be severe and generally occur following the administration of multiple doses. Clinical manifestations may include one or more of the following:

The drug should be discontinued immediately at the first appearance of a skin rash, jaundice, or any other sign of hypersensitivity and supportive measures instituted (See and ).

Clostridium difficile

C. difficile

C. difficile

C. difficile

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of , and surgical evaluation should be instituted as clinically indicated.

Peripheral neuropathy:

Quinolones may cause central nervous system (CNS) events, including: nervousness, agitation, insomnia, anxiety, nightmares or paranoia. (See and .)

Moderate to severe photosensitivity/phototoxicity reactions, the latter of which may manifest as exaggerated sunburn reactions (e.g., burning, erythema, exudation, vesicles, blistering, edema) involving areas exposed to light (typically the face, “V” area of the neck, extensor surfaces of the forearms, dorsa of the hands), can be associated with the use of quinolone antibiotics after sun or UV light exposure. Therefore, excessive exposure to these sources of light should be avoided. Drug therapy should be discontinued if phototoxicity occurs (See  and ).

Prescribing AVELOX in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Clinical efficacy trials enrolled over 9,200 moxifloxacin orally and intravenously treated patients, of whom over 8,600 patients received the 400 mg dose. Most adverse events reported in moxifloxacin trials were described as mild to moderate in severity and required no treatment. Moxifloxacin was discontinued due to adverse reactions thought to be drug-related in 2.9% of orally treated patients and 6.3 % of sequentially (intravenous followed by oral) treated patients. The latter studies were conducted in community acquired pneumonia and complicated skin and skin structure infections and complicated intra-abdominal infections with, in general, a sicker patient population compared to the tablet studies.

Adverse reactions, judged by investigators to be at least possibly drug-related, occurring in greater than or equal to 2% of moxifloxacin treated patients were: nausea (6%), diarrhea (5%), dizziness (2%).

Additional clinically relevant uncommon events, judged by investigators to be at least possibly drug-related, that occurred in greater than or equal to 0.1% and less than 2% of moxifloxacin treated patients were:

BODY AS A WHOLE: abdominal pain, headache, asthenia, dehydration (secondary to diarrhea or reduced fluid intake), injection site reaction (including phlebitis), malaise, moniliasis, pain, allergic reaction

CARDIOVASCULAR: cardiac arrhythmia (not otherwise specified), tachycardia, palpitation, vasodilation, QT interval prolonged

DIGESTIVE: vomiting, abnormal liver function test (increased transaminases, increased bilirubin), dyspepsia, dry mouth, flatulence, oral moniliasis, constipation, GGTP increased, anorexia, stomatitis, glossitis

HEMIC AND LYMPHATIC: leukopenia, eosinophilia, prothrombin decrease (prothrombin time prolonged/International Normalized Ratio (INR) increased), thrombocythemia

METABOLIC AND NUTRITIONAL: lactic dehydrogenase increased, amylase increased

MUSCULOSKELETAL: arthralgia, myalgia

NERVOUS SYSTEM: insomnia, nervousness, vertigo, somnolence, anxiety, tremor

SKIN/APPENDAGES: rash (maculopapular, purpuric, pustular), pruritus, sweating, urticaria

SPECIAL SENSES: taste perversion

UROGENITAL: vaginal moniliasis, vaginitis

Additional clinically relevant rare events, judged by investigators to be at least possibly drug-related, that occurred in less than 0.1% of moxifloxacin treated patients were:

abnormal dreams, abnormal vision (visual disturbances temporally associated with CNS symptoms), agitation, amblyopia, amnesia, anemia, aphasia, arthritis, asthma, atrial fibrillation, back pain, chest pain, confusion, convulsions of various clinical manifestations (including grand mal convulsions), depersonalization, depression (potentially culminating in self-endangering behavior), dysphagia, dyspnea, ECG abnormal, emotional lability, face edema, gastritis, gastrointestinal disorder, hallucinations, hyperglycemia, hyperlipidemia, hypertension, hypertonia, hyperuricemia, hypesthesia, hypotension, incoordination, jaundice (predominantly cholestatic), kidney function abnormal, lab test abnormal (not specified), leg pain, paraesthesia, parosmia, pelvic pain, peripheral edema, photosensitivity/phototoxicity reactions, pseudomembranous colitis, prothrombin increase (prothrombin time decreased/International Normalized Ratio (INR) decreased), sleep disorders, speech disorders, supraventricular tachycardia, syncope, taste loss, tendon disorder, thinking abnormal, thrombocytopenia, thromboplastin decrease, tinnitus, tongue discoloration, ventricular tachycardia

Additional adverse events have been reported from worldwide post-marketing experience with moxifloxacin. Because these events are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These events, some of them life-threatening, include anaphylactic reaction, anaphylactic shock, angioedema (including laryngeal edema), hepatic failure, including fatal cases, hepatitis (predominantly cholestatic), photosensitivity/phototoxicity reaction (see , psychotic reaction (very rarely culminating in self-endangering behavior), renal dysfunction or renal failure, Stevens-Johnson syndrome, tendon rupture, toxic epidermal necrolysis, and ventricular tachyarrhythmias (including in very rare cases cardiac arrest and torsade de pointes, and usually in patients with concurrent severe underlying proarrhythmic conditions). Cases of altered coordination and abnormal gait as well as exacerbation of myasthenia gravis have also been reported.

Changes in laboratory parameters, without regard to drug relationship, which are not listed above and which occurred in ≥ 2% of patients and at an incidence greater than in controls included: increases in MCH, neutrophils, WBCs, PT ratio, ionized calcium, chloride, albumin, globulin, bilirubin; decreases in hemoglobin, RBCs, neutrophils, eosinophils, basophils, PT ratio, glucose, pO, bilirubin and amylase. It cannot be determined if any of the above laboratory abnormalities were caused by the drug or the underlying condition being treated.

&times

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

&times

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
&times

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
&times

Tips

Tips

&times

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).