Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Bromocriptine Mesylate
Overview
What is Bromocriptine Mesylate?
What does Bromocriptine Mesylate look like?
What are the available doses of Bromocriptine Mesylate?
Sorry No records found.
What should I talk to my health care provider before I take Bromocriptine Mesylate?
Sorry No records found
How should I use Bromocriptine Mesylate?
Sorry No records found
What interacts with Bromocriptine Mesylate?
Uncontrolled hypertension and sensitivity to any ergot alkaloids. In patients being treated for hyperprolactinemia bromocriptine mesylate should be withdrawn when pregnancy is diagnosed (see In the event that bromocriptine mesylate is reinstituted to control a rapidly expanding macroadenoma (see and a patient experiences a hypertensive disorder of pregnancy, the benefit of continuing bromocriptine mesylate must be weighed against the possible risk of its use during a hypertensive disorder of pregnancy. When bromocriptine mesylate is being used to treat acromegaly, prolactinoma, or Parkinson's disease in patients who subsequently become pregnant, a decision should be made as to whether the therapy continues to be medically necessary or can be withdrawn. If it is continued, the drug should be withdrawn in those who may experience hypertensive disorders of pregnancy (including eclampsia, preeclampsia, or pregnancy-induced hypertension) unless withdrawal of bromocriptine mesylate is considered to be medically contraindicated.
The drug should not be used during the post-partum period in women with a history of coronary artery disease and other severe cardiovascular conditions unless withdrawal is considered medically contraindicated. If the drug is used in the post-partum period the patient should be observed with caution.
What are the warnings of Bromocriptine Mesylate?
ANABOLIC STEROIDS HAVE NOT BEEN SHOWN TO ENHANCE ATHLETIC ABILITY.
Since hyperprolactinemia with amenorrhea/ galactorrhea and infertility has been found in patients with pituitary tumors, a complete evaluation of the pituitary is indicated before treatment with bromocriptine mesylate.
If pregnancy occurs during bromocriptine mesylate administration, careful observation of these patients is mandatory. Prolactin-secreting adenomas may expand and compression of the optic or other cranial nerves may occur, emergency pituitary surgery becoming necessary. In most cases, the compression resolves following delivery. Reinitiation of bromocriptine mesylate treatment has been reported to produce improvement in the visual fields of patients in whom nerve compression has occurred during pregnancy. The safety of bromocriptine mesylate treatment during pregnancy to the mother and fetus has not been established. Symptomatic hypotension can occur in patients treated with bromocriptine mesylate for any indication. In postpartum studies with bromocriptine mesylate, decreases in supine systolic and diastolic pressures of greater than 20 mm and 10 mm Hg, respectively, have been observed in almost 30% of patients receiving bromocriptine mesylate. On occasion, the drop in supine systolic pressure was as much as 50 to 59 mm of Hg.
Although a causal relationship between bromocriptine mesylate administration and hypertension, seizures, strokes, and myocardial infarction in postpartum women has not been established, use of the drug for prevention of physiological lactation, or in patients with uncontrolled hypertension is not recommended. In patients being treated for hyperprolactinemia bromocriptine mesylate should be withdrawn when pregnancy is diagnosed (see In the event that bromocriptine mesylate is reinstituted to control a rapidly expanding macroadenoma (see and a patient experiences a hypertensive disorder of pregnancy, the benefit of continuing bromocriptine mesylate must be weighed against the possible risk of its use during a hypertensive disorder of pregnancy. When bromocriptine mesylate is being used to treat acromegaly or Parkinson's disease in patients who subsequently become pregnant, a decision should be made as to whether the therapy continues to be medically necesssary or can be withdrawn. If it is continued, the drug should be withdrawn in those who may experience hypertensive disorders of pregnancy (including eclampsia, preeclampsia, or pregnancy-induced hypertension) unless withdrawal of bromocriptine mesylate is considered to be medically contraindicated. Because of the possibility of an interaction between bromocriptine mesylate and other ergot alkaloids, the concomitant use of these medications is not recommended. Particular attention should be paid to patients who have recently received other drugs that can alter the blood pressure.
Long-term treatment (6 to 36 months) with bromocriptine mesylate in doses ranging from 20 to 100 mg/day has been associated with pulmonary infiltrates, pleural effusion and thickening of the pleura in a few patients. In those instances in which bromocriptine mesylate treatment was terminated, the changes slowly reverted towards normal.
What are the precautions of Bromocriptine Mesylate?
General
Safety and efficacy of bromocriptine mesylate have not been established in patients with renal or hepatic disease. Care should be exercised when administering bromocriptine mesylate therapy concomitantly with other medications known to lower blood pressure. The drug should be used with caution in patients with a history of psychosis or cardiovascular disease. If acromegalic patients or patients with prolactinoma or Parkinson's disease are being treated with bromocriptine mesylate during pregnancy, they should be cautiously observed, particularly during the post-partum period if they have a history of cardiovascular disease.
Hyperprolactinemic States
The relative efficacy of bromocriptine mesylate versus surgery in preserving visual fields is not known. Patients with rapidly progressive visual field loss should be evaluated by a neurosurgeon to help decide on the most appropriate therapy. Since pregnancy is often the therapeutic objective in many hyperprolactinemic patients presenting with amenorrhea/galactorrhea and hypogonadism (infertility), a careful assessment of the pituitary is essential to detect the presence of a prolactin-secreting adenoma. Patients not seeking pregnancy, or those harboring large adenomas, should be advised to use contraceptive measures, other than oral contraceptives, during treatment with bromocriptine mesylate. Since pregnancy may occur prior to reinitiation of menses, a pregnancy test is recommended at least every four weeks during the amenorrheic period, and, once menses are reinitiated, every time a patient misses a menstrual period. Treatment with bromocriptine mesylate tablets should be discontinued as soon as pregnancy has been established. Patients must be monitored closely throughout pregnancy for signs and symptoms that may signal the enlargement of a previously undetected or existing prolactin-secreting tumor. Discontinuation of bromocriptine mesylate treatment in patients with known macroadenomas has been associated with rapid regrowth of tumor and increase in serum prolactin in most cases.
Acromegaly
Cold sensitive digital vasospasm has been observed in some acromegalic patients treated with bromocriptine mesylate. The response, should it occur, can be reversed by reducing the dose of bromocriptine mesylate and may be prevented by keeping the fingers warm. Cases of severe gastrointestinal bleeding from peptic ulcers have been reported, some fatal. Although there is no evidence that bromocriptine mesylate increases the incidence of peptic ulcers in acromegalic patients, symptoms suggestive of peptic ulcer should be investigated thoroughly and treated appropriately. Patients with a history of peptic ulcer or gastrointestinal bleeding should be observed carefully during treatment with bromocriptine mesylate.
Possible tumor expansion while receiving bromocriptine mesylate therapy has been reported in a few patients. Since the natural history of growth hormone secreting tumors is unknown, all patients should be carefully monitored and, if evidence of tumor expansion develops, discontinuation of treatment and alternative procedures considered.
Parkinson's Disease
Safety during long-term use for more than two years at the doses required for parkinsonism has not been established. As with any chronic therapy, periodic evaluation of hepatic, hematopoietic, cardiovascular, and renal function is recommended. Symptomatic hypotension can occur and, therefore, caution should be exercised when treating patients receiving antihypertensive drugs.
High doses of bromocriptine mesylate may be associated with confusion and mental disturbances. Since parkinsonian patients may manifest mild degrees of dementia, caution should be used when treating such patients. Bromocriptine mesylate administered alone or concomitantly with levodopa may cause hallucinations (visual or auditory). Hallucinations usually resolve with dosage reduction; occasionally, discontinuation of bromocriptine mesylate is required. Rarely, after high doses, hallucinations have persisted for several weeks following discontinuation of bromocriptine mesylate.
As with levodopa, caution should be exercised when administering bromocriptine mesylate to patients with a history of myocardial infarction who have a residual atrial, nodal, or ventricular arrhythmia.
Retroperitoneal fibrosis has been reported in a few patients receiving long-term therapy (2 to 10 years) with bromocriptine mesylate in doses ranging from 30 to 140 mg daily.
Information for patients
When initiating therapy, all patients receiving bromocriptine mesylate should be cautioned with regard to engaging in activities requiring rapid and precise responses, such as driving an automobile or operating machinery since dizziness (8% to 16%), drowsiness (8%), faintness, fainting (8%), and syncope (less than 1%) have been reported early in the course of therapy. Patients receiving bromocriptine mesylate for hyperprolactinemic states associated with macroadenoma or those who have had previous transsphenoidal surgery, should be told to report any persistent watery nasal discharge to their physician. Patients receiving bromocriptine mesylate for treatment of a macroadenoma should be told that discontinuation of drug may be associated with rapid regrowth of the tumor and recurrence of their original symptoms.
Drug interactions
The risk of using bromocriptine mesylate in combination with other drugs has not been systematically evaluated, but alcohol may potentiate the side effects of bromocriptine mesylate. Bromocriptine mesylate may interact with dopamine antagonists, butyrophenones, and certain other agents. Compounds in these categories result in a decreased efficacy of bromocriptine mesylate: phenothiazines, haloperidol, metoclopramide, pimozide. Concomitant use of bromocriptine mesylate with other ergot alkaloids is not recommended.
Carcinogenesis, Mutagenesis, Impairment of Fertility
A 74-week study was conducted in mice using dietary levels of bromocriptine mesylate equivalent to oral doses of 10 and 50 mg/kg/day. A 100-week study in rats was conducted using dietary levels equivalent to oral doses of 1.7, 9.8, and 44 mg/kg/day. The highest doses tested in mice and rats were approximately 2.5 and 4.4 times, respectively, the maximum human dose administered in controlled clinical trials (100 mg/day) based on body surface area. Malignant uterine tumors, endometrial and myometrial, were found in rats as follows: 0/50 control females, 2/50 females given 1.7 mg/kg daily, 7/49 females given 9.8 mg/kg daily, and 9/50 females given 44 mg/kg daily. The occurrence of these neoplasms is probably attributable to the high estrogen/progesterone ratio which occurs in rats as a result of the prolactin-inhibiting action of bromocriptine mesylate. The endocrine mechanisms believed to be involved in the rats are not present in humans. There is no known correlation between uterine malignancies occurring in bromocriptine-treated rats and human risk. In contrast to the findings in rats, the uteri from mice killed after 74 weeks treatment did not exhibit evidence of drug-related changes.
Bromocriptine mesylate was evaluated for mutagenic potential in the battery of tests that included Ames bacterial mutation assay, mutagenic activity on V79 Chinese hamster fibroblasts, cytogenetic analysis of Chinese hamster bone marrow cells following treatment, and an micronucleus test for mutagenic potential in mice.
No mutagenic effects were obtained in any of these tests.
Fertility and reproductive performance in female rats were not influenced adversely by treatment with bromocriptine beyond the predicted decrease in the weight of pups due to suppression of lactation. In males treated with 50 mg/kg of this drug, mating and fertility were within the normal range. Increased perinatal loss was produced in the subgroups of dams, sacrificed on day 21 post-partum (p.p.) after mating with males treated with the highest dose (50 mg/kg).
Pregnancy: Teratogenic Effects: Category B:
Administration of 10 to 30 mg/kg of bromocriptine to 2 strains of rats on days 6 to 15 post coitum (p.c.) as well as a single dose of 10 mg/kg on day 5 p.c. interfered with nidation. Three mg/kg given on days 6 to 15 were without effect on nidation, and did not produce any anomalies. In animals treated from day 8 to 15 p.c., i.e., after implantation, 30 mg/kg produced increased prenatal mortality in the form of increased incidence of embryonic resorption. One anomaly, aplasia of spinal vertebrae and ribs, was found in the group of 262 fetuses derived from the dams treated with 30 mg/kg bromocriptine. No fetotoxic effects were found in offspring of dams treated during the peri- or post-natal period. Two studies were conducted in rabbits (2 strains) to determine the potential to interfere with nidation. Dose levels of 100 or 300 mg/kg/day from day 1 to day 6 p.c. did not adversely affect nidation. The high dose was approximately 63 times the maximum human dose administered in controlled clinical trials (100 mg/day), based on body surface area. In New Zealand white rabbits some embryo mortality occurred at 300 mg/kg which was a reflection of overt maternal toxicity. Three studies were conducted in 2 strains of rabbits to determine the teratological potential of bromocriptine at dose levels of 3,10,30, 100, and 300 mg/kg given from day 6 to day 18 p.c. in 2 studies with the Yellow-silver strain, cleft palate was found in 3 and 2 fetuses at maternally toxic doses of 100 and 300 mg/kg, respectively. One control fetus also exhibited this anomaly. In the third study conducted with New Zealand white rabbits using an identical protocol, no cleft palates were produced.
No teratological or embryo-toxic effects of bromocriptine were produced in any of 6 offspring from 6 monkeys at a dose level of 2 mg/kg.
Information concerning 1276 pregnancies in women taking bromocriptine has been collected. In the majority of cases, bromocriptine was discontinued within 8 weeks into pregnancy (mean 28.7 days), however, 8 patients received the drug continuously throughout pregnancy. The mean daily dose for all patients was 5.8 mg (range 1 to 40 mg). Of these 1276 pregnancies, there were 1088 full term deliveries (4 stillborn), 145 spontaneous abortions (11.4%), and 28 induced abortions (2.2%). Moreover, 12 extrauterine gravidities and 3 hydatidiform moles (twice in the same patient) caused early termination of pregnancy. These data compare favorably with the abortion rate (11% to 25%) cited for pregnancies induced by clomiphene citrate, menopausal gonadotropin, and chorionic gonadotropin.
Although spontaneous abortions often go unreported, especially prior to 20 weeks of gestation, their frequency has been estimated to be 15%.
The incidence of birth defects in the population at large ranges from 2% to 4.5%. The incidence in 1109 live births from patients receiving bromocriptine is 3.3%.
There is no suggestion that bromocriptine contributed to the type or incidence of birth defects in this group of infants.
Nursing mothers
Bromocriptine mesylate should not be used during lactation in postpartum women.
Pediatric use
The safety and effectiveness of bromocriptine for the treatment of prolactin-secreting pituitary adenomas have been established in patients age 16 to adult. No data are available for bromocriptine use in pediatric patients under the age of 8 years. A single 8-year old patient treated with bromocriptine for a prolactin-secreting pituitary macroadenoma has been reported without therapeutic response.
The use of bromocriptine for the treatment of prolactin-secreting adenomas in pediatric patients in the age group 11 to under 16 years is supported by evidence from well-controlled trials in adults, with additional data in a limited number (n=14) of children and adolescents 11 to 15 years of age with prolactin-secreting pituitary macro- and microadenomas who have been treated with bromocriptine.
Of the 14 reported patients, 9 had successful outcomes, 3 partial responses, and 2 failed to respond to bromocriptine treatment. Chronic hypopituitarism complicated macroadenoma treatment in 5 of the responders, both in patients receiving bromocriptine alone and in those who received bromocriptine in combination with surgical treatment and/or pituitary irradiation. Safety and effectiveness of bromocriptine in pediatric patients have not been established for any other indication listed in the section.
What are the side effects of Bromocriptine Mesylate?
Hyperprolactinemic Indications
The incidence of adverse effects is quite high (69%) but these are generally mild to moderate in degree. Therapy was discontinued in approximately 5% of patients because of adverse effects. These in decreasing order of frequency are: nausea (49%), headache (19%), dizziness (17%), fatigue (7%), light-headedness (5%), vomiting (5%), abdominal cramps (4%), nasal congestion (3%), constipation (3%), diarrhea (3%), and drowsiness (3%).
A slight hypotensive effect may accompany bromocriptine mesylate treatment. The occurrence of adverse reactions may be lessened by temporarily reducing dosage to 1.25 mg two or three times daily. A few cases of cerebrospinal fluid rhinorrhea have been reported in patients receiving bromocriptine mesylate for treatment of large prolactinomas. This has occurred rarely, usually only in patients who have received previous transsphenoidal surgery, pituitary radiation, or both, and who were receiving bromocriptine mesylate for tumor recurrence. It may also occur in previously untreated patients whose tumor extends into the sphenoid sinus.
Acromegaly
The most frequent adverse reactions encountered in acromegalic patients treated with bromocriptine mesylate were: nausea (18%), constipation (14%), postural/orthostatic hypotension (6%), anorexia (4%), dry mouth/nasal stuffiness (4%), indigestion/dyspepsia (4%), digital vasospasm (3%), drowsiness/tiredness (3%) and vomiting (2%).
Less frequent adverse reactions (less than 2%) were: gastrointestinal bleeding, dizziness, exacerbation of Raynaud's Syndrome, headache and syncope. Rarely (less than 1 %) hair loss, alcohol potentiation, faintness, lightheadedness, arrhythmia, ventricular tachycardia, decreased sleep requirement, visual hallucinations, lassitude, shortness of breath, bradycardia, vertigo, paresthesia, sluggishness, vasovagal attack, delusional psychosis, paranoia, insomnia, heavy headedness, reduced tolerance to cold, tingling of ears, facial pallor and muscle cramps have been reported.
Parkinson's Disease
In clinical trials in which bromocriptine was administered with concomitant reduction in the dose of levodopa/carbidopa, the most common newly appearing adverse reactions were: nausea, abnormal involuntary movements, hallucinations, confusion, "on-off" phenomenon, dizziness, drowsiness, faintness/fainting, vomiting, asthenia, abdominal discomfort, visual disturbance, ataxia, insomnia, depression, hypotension, shortness of breath, constipation, and vertigo. Less common adverse reactions which may be encountered include: anorexia, anxiety, blepharospasm, dry mouth, dysphagia, edema of the feet and ankles, erythromelalgia, epileptiform seizure, fatigue, headache, lethargy, mottling of skin, nasal stuffiness, nervousness, nightmares, paresthesia, skin rash, urinary frequency, urinary incontinence, urinary retention, and rarely, signs and symptoms of ergotism such as tingling of fingers, cold feet, numbness, muscle cramps of feet and legs or exacerbation of Raynaud's Syndrome.
Abnormalities in laboratory tests may include elevations in blood urea nitrogen, SGOT, SGPT, GGPT, CPK, alkaline phosphatase and uric acid, which are usually transient and not of clinical significance.
Adverse Events Observed in Other Conditions:
In postpartum studies with bromocriptine mesylate 23 percent of postpartum patients treated had at least 1 side effect, but they were generally mild to moderate in degree. Therapy was discontinued in approximately 3% of patients. The most frequently occurring adverse reactions were: headache (10%), dizziness (8%), nausea (7%), vomiting (3%), fatigue (1.0%), syncope (0.7%), diarrhea (0.4%) and cramps (0.4%). Decreases in blood pressure (> 20 mm Hg systolic and > 10 mm Hg diastolic) occurred in 28% of patients at least once during the first 3 postpartum days; these were usually of a transient nature. Reports of fainting in the puerperium may possibly be related to this effect. In postmarketing experience in the U.S. serious adverse reactions reported include 72 cases of seizures (including 4 cases of status epilepticus), 30 cases of stroke, and 9 cases of myocardial infarction among postpartum patients. Seizure cases were not necessarily accompanied by the development of hypertension. An unremitting and often progressively severe headache, sometimes accompanied by visual disturbance, often preceded by hours to days many cases of seizure and/or stroke. Most patients had shown no evidence of any of the hypertensive disorders of pregnancy including eclampsia, preeclampsia or pregnancy induced hypertension. One stroke case was associated with sagittal sinus thrombosis, and another was associated with cerebral and cerebellar vasculitis. One case of myocardial infarction was associated with unexplained disseminated intravascular coagulation and a second occurred in conjunction with use of another ergot alkaloid. The relationship of these adverse reactions to bromocriptine mesylate administration has not been established.
What should I look out for while using Bromocriptine Mesylate?
Sorry No records found
What might happen if I take too much Bromocriptine Mesylate?
Sorry No Records found
How should I store and handle Bromocriptine Mesylate?
Sorry No Records found
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
Non-Clinical Toxicology
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).