Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Chenodal
Overview
What is Chenodal?
Chenodiol is the non-proprietary name for chenodeoxycholic acid, a naturally occurring human bile acid. It is a bitter-tasting white powder consisting of crystalline and amorphous particles freely soluble in methanol, acetone and acetic acid and practically insoluble in water. Its chemical name is 3α, 7α-dihydroxy-5β-cholan-24-oic acid (C24H40O4), it has a molecular weight of 392.58, and its structure is shown below;
Chenodiol film-coated tablets for oral administration contain 250 mg of chenodiol.
Inactive ingredients: pregelatinized starch; silicon dioxide; microcrystalline cellulose, sodium starch glycollate; and magnesium stearate; the thin-film coating contains: opadry YS-2-7035 [consisting of methylcellulose and glycerin] and sodium lauryl sulfate
What does Chenodal look like?





What are the available doses of Chenodal?
Sorry No records found.
What should I talk to my health care provider before I take Chenodal?
Sorry No records found
How should I use Chenodal?
Chenodal (chenodiol tablets) is indicated for patients with radiolucent stones in well-opacifying gallbladders, in whom selective surgery would be undertaken except for the presence of increased surgical risk due to systemic disease or age. The likelihood of successful dissolution is far greater if the stones are floatable or small. For patients with nonfloatable stones, dissolution is less likely and added weight should be given to the risk that more emergent surgery might result form a delay due to unsuccessful treatment. Safety of use beyond 24 months is not established. Chenodiol will not dissolve calcified (radiopaque) or radiolucent bile pigment stones.
The recommended dose range for Chenodal (chenodiol tablets) is 13 to 16 mg/kg/day in two divided doses, morning and night, starting with 250 mg b.i.d. the first two weeks and increasing by 250 mg/day each week thereafter until the recommended or maximum tolerated dose is reached. If diarrhea occurs during dosage buildup or later in treatment, it usually can be controlled by temporary dosage adjustment until symptoms abate, after which the previous dosage usually is tolerated. Dosage less than 10 mg/kg usually is ineffective and may be associated with increased risk of cholecystectomy, so is not recommended.
The optimal frequency of monitoring liver function tests is not known. It is suggested that serum aminotransferase levels should be monitored monthly for the first three months and every three months thereafter during Chenodal (chenodiol tablets) administration. Under NCGS guidelines, if a minor, usually transient elevations (1 ½ to3 three times the upper limit of normal) persisted longer than three to six months. Chenodiol was discontinued and resumed only after the aminotransferase level returned to normal; however, allowing the elevations to persist over such an interval is not know to be safe. Elevations over three times the upper limit of normal require immediate discontinuation of Chenodal (chenodiol tablets) and usually reoccur on challenge.
Serum cholesterol should be monitored at six months intervals. It may be advisable to discontinue Chenodal (chenodiol tablets) if cholesterol rises above the acceptable age-adjusted limit for given patient.
Oral cholecystograms or ultrasonograms are recommend at six to nine month intervals to monitor response. Complete dissolutions should be confirmed by a repeat test after one to three months continued Chenodal (chenodiol tablets) administration. Most patients who eventually achieve complete dissolution will show partial (or complete) dissolution at the first on-treatment test. If partial dissolution is not seen by nine to 12 months, the likelihood of success of treating loner is greatly reduced; Chenodal (chenodiol tablets) should be discontinued if there is no response by 18 months. Safety of use beyond 24 months is not established.
Stone recurrence can be expected within five years in 50% of cases. After confirmed dissolution, treatment generally should be stopped. Serial cholecystograms or ultrasonograms are recommended to monitor for recurrence, keeping in mind that radiolucency and gallbladder function should be established before starting another course of Chenodal (chenodiol tablets). A prophylactic doses is not established; reduced doses cannot be recommended; stones have recurred on 500 mg/day. Low cholesterol or carbohydrate diets, and dietary bran, have been reported to reduce biliary cholesterol; maintenance of reduced weight is recommended to forestall stone recurrence.
What interacts with Chenodal?
Sorry No Records found
What are the warnings of Chenodal?
Array
What are the precautions of Chenodal?
Information for patients
Patients should be counseled on the importance of periodic visits for liver function tests and oral cholecystograms (or ultrasonograms) for monitoring stone dissolution; they should be made aware of the symptoms of gallstone complications and be warned to report immediately such symptoms to the physician. Patients should be instructed on ways to facilitate faithful compliance with the dosage regimen throughout the usual long term of therapy, and on temporary doses reduction if episodes of diarrhea occur.
Drug interactions
Carcinogenesis, mutagenesis, impairment of fertility
A two-year oral study of chenodiol in rats failed to show a carcinogenic potential at the tested levels of 15 to 60 mg/kg/day (1 to 4 times the maximum recommended human dose, MRHD). It has been reported that chenodiol given in long-term studies at oral doses up to 600 mg/kg/day (40 times the MRHD) to rats and 1000 mg/kg/day (65 times the MRHD) to mice induced benign and malignant liver cell tumors in female rats and cholangiomata in female rats and male mice. Two-year studies of lithocholic acid ( a major metabolite of chenodiol) in mice (125 to 250 mg/kg/day) and rats (250 and 500 mg/kg/day) found it not to be carcinogenic. The dietary administration of Lithocholic acid to chickens is reported to cause hepatic adenomatous hyperplasia.
Pregnancy
Pregnancy Category X: See CONTRAINDICATIONS
Nursing mothers
Pediatric use
The safety and effectiveness of chenodiol in children have not been established.
What are the side effects of Chenodal?
Array
Hepatobiliary
Dose-related serum aminotransferase (mainly SGPT) elevations, usually not accompanied by rises in alkaline phosphatase or bilirubin, occurred in 30% or more of patients treated with the recommended dose of Chenodiol. In most cases, these elevations were minor (1 ½ to 3 times the upper limit of laboratory normal) and transient, returning to within the normal range within six months despite continued administration of the drug. In 2% to 3% of patients, SGPT levels rose to over three times the upper limit of laboratory normal, recurred on rechallenge with the drug, and required discontinuation of chenodiol treatment. Enzyme levels have returned to normal following withdrawal of chenodiol (see WARNINGS).
Morphologic studies of liver biopsies taken before and after 9 and 24 months of treatment with chenodiol have shown that 63% of the patients prior to chenodiol treatment had evidence of intrahepatic cholestasis. Almost all pretreatment patients had electron microscopic abnormalities. By the ninth month of treatment, reexamination of two-thirds of the patients showed an 89% incidence of the signs of intrahepatic cholestasis. Two of 89 patients at the ninth month had lithocholate-like lesions in the canalicular membrane, although there were not clinical enzyme abnormalities in the face of continued treatment and no change in Type 2 light microscopic parameters.
Increased Cholecystectomy Rate
NCGS patients with a history of biliary pain prior to treatment had higher cholecystectomy rates during the study if assigned to low dosage chenodiol (375 mg/day) than if assigned to either placebo or high dosage chenodiol (750 mg/day). The association with low dosage chenodiol though not clearly a causal one, suggests that patients unable to take higher doses of chenodiol may be at greater risk of cholecystectomy.
Gastrointestinal
Serum Lipids
Hematologic
What should I look out for while using Chenodal?
S
What might happen if I take too much Chenodal?
Sorry No Records found
How should I store and handle Chenodal?
Store at controlled room temperature 20° to 25°C (68° to 77°F) [see USP] .Betamethasone Dipropionate Gel, 0.05% (augmented) is supplied as follows:Store between 2° and 25°C (36° and 77°F).E. FOUGERA & CO.I2266A R1/08 #194Betamethasone Dipropionate Gel, 0.05% (augmented) is supplied as follows:Store between 2° and 25°C (36° and 77°F).E. FOUGERA & CO.I2266A R1/08 #194Betamethasone Dipropionate Gel, 0.05% (augmented) is supplied as follows:Store between 2° and 25°C (36° and 77°F).E. FOUGERA & CO.I2266A R1/08 #194Betamethasone Dipropionate Gel, 0.05% (augmented) is supplied as follows:Store between 2° and 25°C (36° and 77°F).E. FOUGERA & CO.I2266A R1/08 #194
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
At therapeutic doses, chenodiol suppresses hepatic synthesis of both cholesterol and cholic acid, gradually replacing the latter and its metabolite, deoxycholic acid in an expanded bile acid pool. These actions contribute to biliary cholesterol desaturation and gradual dissolution of radiolucent cholesterol gallstones in the presence of a gall-bladder visualized by oral cholecystography. Chenodiol has no effect on radiopaque (calcified) gallstones or on radiolucent bile pigment stones.
Chenodiol is well absorbed from the small intestine and taken up by the liver where it is converted to its taurine and glycine conjugates and secreted in bile. Owing to 60 % to 80% first-pass hepatic clearance, the body pool of chenodiol resides mainly in the enterohepatic circulation; serum and urinary bile acid levels are not significantly affected during chenodiol therapy.
At steady-state, an amount of chenodiol near the daily dose escapes to the colon and is converted by bacterial action to lithocholic acid. About 80% of the lithocholate is excreted in the feces; the remainder is absorbed and converted in the liver to its poorly absorbed sulfolithocholyl conjugates. During chenodiol therapy there is only a minor increase in biliary lithocholate, while fecal bile acids are increased three- to fourfold.
Chenodiol is unequivocally hepatotoxic in many animal species, including sub-human primates at doses close to the human dose. Although the theoretical cause is the metabolite, lithocholic acid, an established hepatotoxin, and man has an efficient mechanism for sulfating and eliminating this substance, there is some evidence that the demonstrated hepatotoxicity is partly due to chenodiol per se. The hepatotoxicity of lithocholic acid is characterized biochemically and morphologically as cholestatic.
Man has the capacity to form sulfate conjugates of lithocholic acid. Variation in this capacity among individuals has not been well established and a recent published report suggests that patients who develop chenodiol-induced serum aminotransferase elevations are poor sulfators of lithocholic acid (see ADVERSE REACTIONS and WARNINGS).
Non-Clinical Toxicology
SB
Patients should be counseled on the importance of periodic visits for liver function tests and oral cholecystograms (or ultrasonograms) for monitoring stone dissolution; they should be made aware of the symptoms of gallstone complications and be warned to report immediately such symptoms to the physician. Patients should be instructed on ways to facilitate faithful compliance with the dosage regimen throughout the usual long term of therapy, and on temporary doses reduction if episodes of diarrhea occur.
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).