Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Itraconazole
Overview
What is Itraconazole?
Itraconazole, USP is an azole antifungal agent. Itraconazole, USP is a 1:1:1:1 racemic mixture of four diastereomers (two enantiomeric pairs), each possessing three chiral centers. It may be represented by the following structural formula and nomenclature:
(±)-1-[(
*)-
-butyl]-4-[
-[4-[
-[[(2
*,4
*)-2-(2,4-dichlorophenyl)-2-(1
-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1-piperazinyl]phenyl]-Δ
-1,2,4-triazolin-5-one mixture with (±)-1-[(
*)-
-butyl]-4-[
-[4-[
-[[(2
*,4
*)-2-(2,4-dichlorophenyl)-2-(1
-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1-piperazinyl]phenyl]-Δ
-1,2,4-triazolin-5-one
or
(±)-1-[(
)-
-butyl]-4-[
-[4-[
-[[(2
,4
)-2-(2,4-dichlorophenyl)-2-(1
-1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]-1-piperazinyl]phenyl]-Δ
-1,2,4-triazolin-5-one
Itraconazole, USP has a molecular formula of C
H
Cl
N
O
and a molecular weight of 705.64. It is a white or almost white powder. It is insoluble in water, very slightly soluble in alcohols, and freely soluble in dichloromethane. It has a pKa of 3.70 (based on extrapolation of values obtained from methanolic solutions) and a log (n-octanol/water) partition coefficient of 5.66 at pH 8.1.
Itraconazole capsules contain 100 mg of itraconazole, USP coated on sugar spheres. Inactive ingredients are black iron oxide, FD&C Blue No. 1, gelatin, hypromellose, liquid glucose, microcrystalline cellulose, polyethylene glycol, potassium hydroxide, propylene glycol, shellac, sodium lauryl sulfate, starch (of maize), strong ammonia solution, sucrose and titanium dioxide.
What does Itraconazole look like?


What are the available doses of Itraconazole?
Sorry No records found.
What should I talk to my health care provider before I take Itraconazole?
Sorry No records found
How should I use Itraconazole?
Itraconazole capsules are indicated for the treatment of the following fungal infections in
patients:
Specimens for fungal cultures and other relevant laboratory studies (wet mount, histopathology, serology) should be obtained before therapy to isolate and identify causative organisms. Therapy may be instituted before the results of the cultures and other laboratory studies are known; however, once these results become available, antiinfective therapy should be adjusted accordingly.
Itraconazole capsules are also indicated for the treatment of the following fungal infections in
patients:
Prior to initiating treatment, appropriate nail specimens for laboratory testing (KOH preparation, fungal culture, or nail biopsy) should be obtained to confirm the diagnosis of onychomycosis (see
for more information).
Description of Clinical Studies:
Blastomycosis:
Analyses were conducted on data from two open-label, non-concurrently controlled studies (N=73 combined) in patients with normal or abnormal immune status. The median dose was 200 mg/day. A response for most signs and symptoms was observed within the first 2 weeks, and all signs and symptoms cleared between 3 and 6 months. Results of these two studies demonstrated substantial evidence of the effectiveness of itraconazole for the treatment of blastomycosis compared with the natural history of untreated cases.
Histoplasmosis:
Analyses were conducted on data from two open-label, non-concurrently controlled studies (N=34 combined) in patients with normal or abnormal immune status (not including HIV-infected patients). The median dose was 200 mg/day. A response for most signs and symptoms was observed within the first 2 weeks, and all signs and symptoms cleared between 3 and 12 months. Results of these two studies demonstrated substantial evidence of the effectiveness of itraconazole for the treatment of histoplasmosis, compared with the natural history of untreated cases.
Histoplasmosis in HIV-infected patients:
Data from a small number of HIV-infected patients suggested that the response rate of histoplasmosis in HIV-infected patients is similar to that of non-HIV-infected patients. The clinical course of histoplasmosis in HIV-infected patients is more severe and usually requires maintenance therapy to prevent relapse.
Aspergillosis:
Analyses were conducted on data from an open-label, “single-patient-use” protocol designed to make itraconazole available in the U.S. for patients who either failed or were intolerant of amphotericin B therapy (N=190). The findings were corroborated by two smaller open-label studies (N=31 combined) in the same patient population. Most adult patients were treated with a daily dose of 200 to 400 mg, with a median duration of 3 months. Results of these studies demonstrated substantial evidence of effectiveness of itraconazole as a second-line therapy for the treatment of aspergillosis compared with the natural history of the disease in patients who either failed or were intolerant of amphotericin B therapy.
Onychomycosis of the toenail:
Analyses were conducted on data from three double-blind, placebo-controlled studies (N=214 total; 110 given itraconazole capsules) in which patients with onychomycosis of the toenails received 200 mg of itraconazole capsules once daily for 12 consecutive weeks. Results of these studies demonstrated mycologic cure, defined as simultaneous occurrence of negative KOH plus negative culture, in 54% of patients. Thirty-five percent (35%) of patients were considered an overall success (mycologic cure plus clear or minimal nail involvement with significantly decreased signs) and 14% of patients demonstrated mycologic cure plus clinical cure (clearance of all signs, with or without residual nail deformity). The mean time to overall success was approximately 10 months. Twenty-one percent (21%) of the overall success group had a relapse (worsening of the global score or conversion of KOH or culture from negative to positive).
Onychomycosis of the fingernail:
Analyses were conducted on data from a double-blind, placebo-controlled study (N=73 total; 37 given itraconazole capsules) in which patients with onychomycosis of the fingernails received a 1-week course of 200 mg of itraconazole capsules b.i.d., followed by a 3-week period without itraconazole capsules, which was followed by a second 1-week course of 200 mg of itraconazole capsules b.i.d. Results demonstrated mycologic cure in 61% of patients. Fifty-six percent (56%) of patients were considered an overall success and 47% of patients demonstrated mycologic cure plus clinical cure. The mean time to overall success was approximately 5 months. None of the patients who achieved overall success relapsed.
Itraconazole capsules should be taken with a full meal to ensure maximal absorption. Itraconazole capsules must be swallowed whole.
Itraconazole capsules are a different preparation than itraconazole oral solution and should not be used interchangeably.
Treatment of Blastomycosis and Histoplasmosis:
The recommended dose is 200 mg once daily (2 capsules). If there is no obvious improvement, or there is evidence of progressive fungal disease, the dose should be increased in 100-mg increments to a maximum of 400 mg daily. Doses above 200 mg/day should be given in two divided doses.
Treatment of Aspergillosis:
A daily dose of 200 to 400 mg is recommended.
Treatment in Life-Threatening Situations:
In life-threatening situations, a loading dose should be used.
Although clinical studies did not provide for a loading dose, it is recommended, based on pharmacokinetic data, that a loading dose of 200 mg (2 capsules) three times daily (600 mg/day) be given for the first 3 days of treatment.
Treatment should be continued for a minimum of three months and until clinical parameters and laboratory tests indicate that the active fungal infection has subsided. An inadequate period of treatment may lead to recurrence of active infection.
Itraconazole capsules and itraconazole oral solution should not be used interchangeably. Only the oral solution has been demonstrated effective for oral and/or esophageal candidiasis.
Treatment of Onychomycosis:
Toenails with or without fingernail involvement: The recommended dose is 200 mg (2 capsules) once daily for 12 consecutive weeks.
Treatment of Onychomycosis:
Fingernails only: The recommended dosing regimen is 2 treatment courses, each consisting of 200 mg (2 capsules) b.i.d. (400 mg/day) for 1 week. The courses are separated by a 3-week period without itraconazole capsules.
Use in Patients with Renal Impairment:
Limited data are available on the use of oral itraconazole in patients with renal impairment. Caution should be exercised when this drug is administered in this patient population (see
).
Use in Patients with Hepatic Impairment:
Limited data are available on the use of oral itraconazole in patients with hepatic impairment. Caution should be exercised when this drug is administered in this patient population (see
).
What interacts with Itraconazole?
Sorry No Records found
What are the warnings of Itraconazole?
Sorry No Records found
What are the precautions of Itraconazole?
Sorry No Records found
What are the side effects of Itraconazole?
Sorry No records found
What should I look out for while using Itraconazole?
Congestive Heart Failure:
Itraconazole capsules should not be administered for the treatment of onychomycosis in patients with evidence of ventricular dysfunction such as congestive heart failure (CHF) or a history of CHF (see
.
Drug Interactions:
Co-administration of a number of CYP3A4 substrates are contraindicated with itraconazole. Plasma concentrations increase for the following drugs: methadone, disopyramide, dofetilide, dronedarone, quinidine, ergot alkaloids (such as dihydroergotamine, ergometrine (ergonovine), ergotamine, methylergometrine (methylergonovine)), irinotecan, lurasidone, oral midazolam, pimozide, triazolam, felodipine, nisoldipine, ivabradine, ranolazine, eplerenone, cisapride, lovastatin, simvastatin, ticagrelor, and, in subjects with varying degrees of renal or hepatic impairment, colchicine, fesoterodine, telithromycin and solifenacin (see
for specific examples). This increase in drug concentrations caused by co-administration with itraconazole may increase or prolong both the pharmacologic effect and/or adverse reactions to these drugs. For example, increased plasma concentrations of some of these drugs can lead to QT prolongation and ventricular tachyarrhythmias including occurrences of torsade de pointes, a potentially fatal arrhythmia. Specific examples are listed in
Itraconazole should not be administered for the treatment of onychomycosis to pregnant patients or to women contemplating pregnancy.
Itraconazole capsules are contraindicated for patients who have shown hypersensitivity to itraconazole. There is limited information regarding cross-hypersensitivity between itraconazole and other azole antifungal agents. Caution should be used when prescribing itraconazole capsules to patients with hypersensitivity to other azoles.
Hepatic Effects:
Itraconazole has been associated with rare cases of serious hepatotoxicity, including liver failure and death. Some of these cases had neither pre-existing liver disease nor a serious underlying medical condition, and some of these cases developed within the first week of treatment. If clinical signs or symptoms develop that are consistent with liver disease, treatment should be discontinued and liver function testing performed. Continued itraconazole use or reinstitution of treatment with itraconazole is strongly discouraged unless there is a serious or life-threatening situation where the expected benefit exceeds the risk (see
: Information for Patients and
).
Cardiac Dysrhythmias:
Life-threatening cardiac dysrhythmias and/or sudden death have occurred in patients using drugs such as cisapride, pimozide, methadone, or quinidine concomitantly with itraconazole and/or other CYP3A4 inhibitors. Concomitant administration of these drugs with itraconazole is contraindicated (see
).
Cardiac Disease:
Itraconazole capsules should not be administered for the treatment of onychomycosis in patients with evidence of ventricular dysfunction such as congestive heart failure (CHF) or a history of CHF.
For patients with risk factors for congestive heart failure, physicians should carefully review the risks and benefits of itraconazole therapy. These risk factors include cardiac disease such as ischemic and valvular disease; significant pulmonary disease such as chronic obstructive pulmonary disease; and renal failure and other edematous disorders. Such patients should be informed of the signs and symptoms of CHF, should be treated with caution, and should be monitored for signs and symptoms of CHF during treatment. If signs or symptoms of CHF appear during administration of itraconazole capsules, discontinue administration.
Itraconazole has been shown to have a negative inotropic effect. When itraconazole was administered intravenously to anesthetized dogs, a dose-related negative inotropic effect was documented. In a healthy volunteer study of itraconazole intravenous infusion, transient, asymptomatic decreases in left ventricular ejection fraction were observed using gated SPECT imaging; these resolved before the next infusion, 12 hours later.
Itraconazole has been associated with reports of congestive heart failure. In post-marketing experience, heart failure was more frequently reported in patients receiving a total daily dose of 400 mg although there were also cases reported among those receiving lower total daily doses.
Calcium channel blockers can have negative inotropic effects which may be additive to those of itraconazole. In addition, itraconazole can inhibit the metabolism of calcium channel blockers. Therefore, caution should be used when co-administering itraconazole and calcium channel blockers due to an increased risk of CHF. Concomitant administration of itraconazole and felodipine or nisoldipine is contraindicated.
Cases of CHF, peripheral edema, and pulmonary edema have been reported in the post-marketing period among patients being treated for onychomycosis and/or systemic fungal infections (see
for more information).
Interaction potential:
Itraconazole has a potential for clinically important drug interactions. Co-administration of specific drugs with itraconazole may result in changes in efficacy of itraconazole and/or the co-administered drug, life-threatening effects and/or sudden death. Drugs that are contraindicated, not recommended or recommended for use with caution in combination with itraconazole are listed in
Drug Interactions.
Interchangeability:
Itraconazole capsules and itraconazole oral solution should not be used interchangeably. This is because drug exposure is greater with the Oral Solution than with the Capsules when the same dose of drug is given. In addition, the topical effects of mucosal exposure may be different between the two formulations. Only the oral solution has been demonstrated effective for oral and/or esophageal candidiasis.
What might happen if I take too much Itraconazole?
Itraconazole is not removed by dialysis. In the event of accidental overdosage, supportive measures should be employed. Activated charcoal may be given if considered appropriate. In general, adverse events reported with overdose have been consistent with adverse drug reactions already listed in this package insert for itraconazole (see
.
How should I store and handle Itraconazole?
Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK Itraconazole capsules, are supplied as a hard gelatin capsule filled with white to off-white pellets having “AMNEAL” printed on blue opaque cap and “630” on blue transparent body in black ink. They are available as follows:NDC 50268-450-12 (10 capsules per card, 2 cards per carton)Dispensed in Unit Dose Package. For Institutional Use Only.Store at 20° to 25°C (68° to 77°F); excursions permitted between 15° to 30°C (59° to 86°F) [see USP Controlled Room Temperature]. Protect from light and moisture.Keep out of reach of children.Manufactured for: Pulaski, TN 38478 Mfg. Rev. 07-2016-00AV 09/17 (P) AvPAK
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
Pharmacokinetics and Metabolism:
General Pharmacokinetic Characteristics
Peak plasma concentrations of itraconazole are reached within 2 to 5 hours following oral administration. As a consequence of non-linear pharmacokinetics, itraconazole accumulates in plasma during multiple dosing. Steady-state concentrations are generally reached within about 15 days, with C
values of 0.5 mcg/ml, 1.1 mcg/ml and 2 mcg/ml after oral administration of 100 mg once daily, 200 mg once daily and 200 mg b.i.d., respectively. The terminal half-life of itraconazole generally ranges from 16 to 28 hours after single dose and increases to 34 to 42 hours with repeated dosing. Once treatment is stopped, itraconazole plasma concentrations decrease to an almost undetectable concentration within 7 to 14 days, depending on the dose and duration of treatment. Itraconazole mean total plasma clearance following intravenous administration is 278 ml/min. Itraconazole clearance decreases at higher doses due to saturable hepatic metabolism.
Absorption
Itraconazole is rapidly absorbed after oral administration. Peak plasma concentrations of itraconazole are reached within 2 to 5 hours following an oral capsule dose. The observed absolute oral bioavailability of itraconazole is about 55%.
The oral bioavailability of itraconazole is maximal when itraconazole capsules are taken immediately after a full meal. Absorption of itraconazole capsules is reduced in subjects with reduced gastric acidity, such as subjects taking medications known as gastric acid secretion suppressors (e.g., H
-receptor antagonists, proton pump inhibitors) or subjects with achlorhydria caused by certain diseases (see
). Absorption of itraconazole under fasted conditions in these subjects is increased when itraconazole capsules are administered with an acidic beverage (such as a non-diet cola). When itraconazole capsules were administered as a single 200-mg dose under fasted conditions with non-diet cola after ranitidine pretreatment, a H
-receptor antagonist, itraconazole absorption was comparable to that observed when itraconazole capsules were administered alone (see
).
Itraconazole exposure is lower with the capsule formulation than with the oral solution when the same dose of drug is given (see
).
Distribution
Most of the itraconazole in plasma is bound to protein (99.8%), with albumin being the main binding component (99.6% for the hydroxy-metabolite). It has also a marked affinity for lipids. Only 0.2% of the itraconazole in plasma is present as free drug. Itraconazole is distributed in a large apparent volume in the body (>700 L), suggesting extensive distribution into tissues. Concentrations in lung, kidney, liver, bone, stomach, spleen and muscle were found to be two to three times higher than corresponding concentrations in plasma, and the uptake into keratinous tissues, skin in particular, up to four times higher. Concentrations in the cerebrospinal fluid are much lower than in plasma.
Metabolism
Itraconazole is extensively metabolized by the liver into a large number of metabolites.
studies have shown that CYP3A4 is the major enzyme involved in the metabolism of itraconazole. The main metabolite is hydroxy-itraconazole, which has
antifungal activity comparable to itraconazole; trough plasma concentrations of this metabolite are about twice those of itraconazole.
Excretion
Itraconazole is excreted mainly as inactive metabolites in urine (35%) and in feces (54%) within one week of an oral solution dose. Renal excretion of itraconazole and the active metabolite hydroxy-itraconazole account for less than 1% of an intravenous dose. Based on an oral radiolabeled dose, fecal excretion of unchanged drug ranges from 3% to 18% of the dose.
As re-distribution of itraconazole from keratinous tissues appears to be negligible, elimination of itraconazole from these tissues is related to epidermal regeneration. Contrary to plasma, the concentration in skin persists for 2 to 4 weeks after discontinuation of a 4-week treatment and in nail keratin – where itraconazole can be detected as early as 1 week after start of treatment – for at least six months after the end of a 3-month treatment period.
Special Populations:
Renal Impairment:
Limited data are available on the use of oral itraconazole in patients with renal impairment. A pharmacokinetic study using a single 200-mg oral dose of itraconazole was conducted in three groups of patients with renal impairment (uremia: n=7; hemodialysis: n=7; and continuous ambulatory peritoneal dialysis: n=5). In uremic subjects with a mean creatinine clearance of 13 mL/min. × 1.73 m
, the exposure, based on AUC, was slightly reduced compared with normal population parameters. This study did not demonstrate any significant effect of hemodialysis or continuous ambulatory peritoneal dialysis on the pharmacokinetics of itraconazole (T
, C
, and AUC
-
). Plasma concentration-versus-time profiles showed wide intersubject variation in all three groups. After a single intravenous dose, the mean terminal half-lives of itraconazole in patients with mild (defined in this study as CrCl 50 to 79 ml/min), moderate (defined in this study as CrCl 20 to 49 ml/min), and severe renal impairment (defined in this study as CrCl <20 ml/min) were similar to that in healthy subjects (range of means 42 to 49 hours vs 48 hours in renally impaired patients and healthy subjects, respectively). Overall exposure to itraconazole, based on AUC, was decreased in patients with moderate and severe renal impairment by approximately 30% and 40%, respectively, as compared with subjects with normal renal function. Data are not available in renally impaired patients during long-term use of itraconazole. Dialysis has no effect on the half-life or clearance of itraconazole or hydroxy-itraconazole (see
).
Hepatic Impairment:
Itraconazole is predominantly metabolized in the liver. A pharmacokinetic study was conducted in 6 healthy and 12 cirrhotic subjects who were administered a single 100-mg dose of itraconazole as capsule. A statistically significant reduction in mean C
(47%) and a twofold increase in the elimination half-life (37 ± 17 hours vs. 16 ± 5 hours) of itraconazole were noted in cirrhotic subjects compared with healthy subjects. However, overall exposure to itraconazole, based on AUC, was similar in cirrhotic patients and in healthy subjects. Data are not available in cirrhotic patients during long-term use of itraconazole (see
).
Decreased Cardiac Contractility:
When itraconazole was administered intravenously to anesthetized dogs, a dose-related negative inotropic effect was documented. In a healthy volunteer study of itraconazole intravenous infusion, transient, asymptomatic decreases in left ventricular ejection fraction were observed using gated SPECT imaging; these resolved before the next infusion, 12 hours later. If signs or symptoms of congestive heart failure appear during administration of itraconazole capsules, itraconazole should be discontinued (see
for more information).
MICROBIOLOGY
Mechanism of Action:
In vitro
Activity
and in Clinical Infections:
Itraconazole exhibits
activity against
species (see
).
Correlation between minimum inhibitory concentration (MIC) results
and clinical outcome has yet to be established for azole antifungal agents.
Drug Resistance:
Isolates from several fungal species with decreased susceptibility to itraconazole have been isolated
and from patients receiving prolonged therapy.
Itraconazole is not active against
(e.g.,
spp.
spp.,
spp. and
spp.),
spp.,
spp. and
spp.
Cross-resistance:
Several
studies have reported that some fungal clinical isolates with reduced susceptibility to one azole antifungal agent may also be less susceptible to other azole derivatives. The finding of cross-resistance is dependent on a number of factors, including the species evaluated, its clinical history, the particular azole compounds compared, and the type of susceptibility test that is performed.
Studies (both
and
) suggest that the activity of amphotericin B may be suppressed by prior azole antifungal therapy. As with other azoles, itraconazole inhibits the
C-demethylation step in the synthesis of ergosterol, a cell wall component of fungi. Ergosterol is the active site for amphotericin B. In one study the antifungal activity of amphotericin B against
infections in mice was inhibited by ketoconazole therapy. The clinical significance of test results obtained in this study is unknown.
Non-Clinical Toxicology
Congestive Heart Failure:Itraconazole capsules should not be administered for the treatment of onychomycosis in patients with evidence of ventricular dysfunction such as congestive heart failure (CHF) or a history of CHF (see .
Drug Interactions:
Co-administration of a number of CYP3A4 substrates are contraindicated with itraconazole. Plasma concentrations increase for the following drugs: methadone, disopyramide, dofetilide, dronedarone, quinidine, ergot alkaloids (such as dihydroergotamine, ergometrine (ergonovine), ergotamine, methylergometrine (methylergonovine)), irinotecan, lurasidone, oral midazolam, pimozide, triazolam, felodipine, nisoldipine, ivabradine, ranolazine, eplerenone, cisapride, lovastatin, simvastatin, ticagrelor, and, in subjects with varying degrees of renal or hepatic impairment, colchicine, fesoterodine, telithromycin and solifenacin (see for specific examples). This increase in drug concentrations caused by co-administration with itraconazole may increase or prolong both the pharmacologic effect and/or adverse reactions to these drugs. For example, increased plasma concentrations of some of these drugs can lead to QT prolongation and ventricular tachyarrhythmias including occurrences of torsade de pointes, a potentially fatal arrhythmia. Specific examples are listed in
Itraconazole should not be administered for the treatment of onychomycosis to pregnant patients or to women contemplating pregnancy.
Itraconazole capsules are contraindicated for patients who have shown hypersensitivity to itraconazole. There is limited information regarding cross-hypersensitivity between itraconazole and other azole antifungal agents. Caution should be used when prescribing itraconazole capsules to patients with hypersensitivity to other azoles.
Hepatic Effects:
Itraconazole has been associated with rare cases of serious hepatotoxicity, including liver failure and death. Some of these cases had neither pre-existing liver disease nor a serious underlying medical condition, and some of these cases developed within the first week of treatment. If clinical signs or symptoms develop that are consistent with liver disease, treatment should be discontinued and liver function testing performed. Continued itraconazole use or reinstitution of treatment with itraconazole is strongly discouraged unless there is a serious or life-threatening situation where the expected benefit exceeds the risk (see : Information for Patients and ).
Cardiac Dysrhythmias:
Life-threatening cardiac dysrhythmias and/or sudden death have occurred in patients using drugs such as cisapride, pimozide, methadone, or quinidine concomitantly with itraconazole and/or other CYP3A4 inhibitors. Concomitant administration of these drugs with itraconazole is contraindicated (see ).
Cardiac Disease:
Itraconazole capsules should not be administered for the treatment of onychomycosis in patients with evidence of ventricular dysfunction such as congestive heart failure (CHF) or a history of CHF.
For patients with risk factors for congestive heart failure, physicians should carefully review the risks and benefits of itraconazole therapy. These risk factors include cardiac disease such as ischemic and valvular disease; significant pulmonary disease such as chronic obstructive pulmonary disease; and renal failure and other edematous disorders. Such patients should be informed of the signs and symptoms of CHF, should be treated with caution, and should be monitored for signs and symptoms of CHF during treatment. If signs or symptoms of CHF appear during administration of itraconazole capsules, discontinue administration.
Itraconazole has been shown to have a negative inotropic effect. When itraconazole was administered intravenously to anesthetized dogs, a dose-related negative inotropic effect was documented. In a healthy volunteer study of itraconazole intravenous infusion, transient, asymptomatic decreases in left ventricular ejection fraction were observed using gated SPECT imaging; these resolved before the next infusion, 12 hours later.
Itraconazole has been associated with reports of congestive heart failure. In post-marketing experience, heart failure was more frequently reported in patients receiving a total daily dose of 400 mg although there were also cases reported among those receiving lower total daily doses.
Calcium channel blockers can have negative inotropic effects which may be additive to those of itraconazole. In addition, itraconazole can inhibit the metabolism of calcium channel blockers. Therefore, caution should be used when co-administering itraconazole and calcium channel blockers due to an increased risk of CHF. Concomitant administration of itraconazole and felodipine or nisoldipine is contraindicated.
Cases of CHF, peripheral edema, and pulmonary edema have been reported in the post-marketing period among patients being treated for onychomycosis and/or systemic fungal infections (see for more information).
Interaction potential:
Itraconazole has a potential for clinically important drug interactions. Co-administration of specific drugs with itraconazole may result in changes in efficacy of itraconazole and/or the co-administered drug, life-threatening effects and/or sudden death. Drugs that are contraindicated, not recommended or recommended for use with caution in combination with itraconazole are listed in Drug Interactions.
Interchangeability:
Itraconazole capsules and itraconazole oral solution should not be used interchangeably. This is because drug exposure is greater with the Oral Solution than with the Capsules when the same dose of drug is given. In addition, the topical effects of mucosal exposure may be different between the two formulations. Only the oral solution has been demonstrated effective for oral and/or esophageal candidiasis.
Furosemide may increase the ototoxic potential of aminoglycoside antibiotics, especially in the presence of impaired renal function. Except in life-threatening situations, avoid this combination.
Furosemide should not be used concomitantly with ethacrynic acid because of the possibility of ototoxicity. Patients receiving high doses of salicylates concomitantly with furosemide, as in rheumatic disease, may experience salicylate toxicity at lower doses because of competitive renal excretory sites.
There is a risk of ototoxic effects if cisplatin and furosemide are given concomitantly. In addition, nephrotoxicity of nephrotoxic drugs such as cisplatin may be enhanced if furosemide is not given in lower doses and with positive fluid balance when used to achieve forced diuresis during cisplatin treatment.
Furosemide has a tendency to antagonize the skeletal muscle relaxing effect of tubocurarine and may potentiate the action of succinylcholine.
Lithium generally should not be given with diuretics because they reduce lithium's renal clearance and add a high risk of lithium toxicity.
Furosemide combined with angiotensin converting enzyme inhibitors or angiotensin II receptor blockers may lead to severe hypotension and deterioration in renal function, including renal failure. An interruption or reduction in the dosage of furosemide, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers may be necessary.
Potentiation occurs with ganglionic or peripheral adrenergic blocking drugs.
Furosemide may decrease arterial responsiveness to norepinephrine. However, norepinephrine may still be used effectively.
Simultaneous administration of sucralfate and furosemide tablets may reduce the natriuretic and antihypertensive effects of furosemide. Patients receiving both drugs should be observed closely to determine if the desired diuretic and/or antihypertensive effect of furosemide is achieved. The intake of furosemide and sucralfate should be separated by at least two hours.
In isolated cases, intravenous administration of furosemide within 24 hours of taking chloral hydrate may lead to flushing, sweating attacks, restlessness, nausea, increase in blood pressure, and tachycardia. Use of furosemide concomitantly with chloral hydrate is therefore not recommended.
Phenytoin interferes directly with renal action of furosemide. There is evidence that treatment with phenytoin leads to decrease intestinal absorption of furosemide, and consequently to lower peak serum furosemide concentrations.
Methotrexate and other drugs that, like furosemide, undergo significant renal tubular secretion may reduce the effect of furosemide. Conversely, furosemide may decrease renal elimination of other drugs that undergo tubular secretion. High-dose treatment of both furosemide and these other drugs may result in elevated serum levels of these drugs and may potentiate their toxicity as well as the toxicity of furosemide.
Furosemide can increase the risk of cephalosporin-induced nephrotoxicity even in the setting of minor or transient renal impairment.
Concomitant use of cyclosporine and furosemide is associated with increased risk of gouty arthritis secondary to furosemide-induced hyperurecemia and cyclosporine impairment of renal urate excretion.
High doses (> 80 mg) of furosemide may inhibit the binding of thyroid hormones to carrier proteins and result in transient increase in free thyroid hormones, followed by an overall decrease in total thyroid hormone levels.
One study in six subjects demonstrated that the combination of furosemide and acetylsalicylic acid temporarily reduced creatinine clearance in patients with chronic renal insufficiency. There are case reports of patients who developed increased BUN, serum creatinine and serum potassium levels, and weight gain when furosemide was used in conjunction with NSAIDs.
Literature reports indicate that coadministration of indomethacin may reduce the natriuretic and antihypertensive effects of furosemide in some patients by inhibiting prostaglandin synthesis. Indomethacin may also affect plasma renin levels, aldosterone excretion, and renin profile evaluation. Patients receiving both indomethacin and furosemide should be observed closely to determine if the desired diuretic and/or antihypertensive effect of furosemide is achieved.
General:
Itraconazole capsules should be administered after a full meal (see .
Under fasted conditions, itraconazole absorption was decreased in the presence of decreased gastric acidity. The absorption of itraconazole may be decreased with the concomitant administration of antacids or gastric acid secretion suppressors. Studies conducted under fasted conditions demonstrated that administration with 8 ounces of a non-diet cola beverage resulted in increased absorption of itraconazole in AIDS patients with relative or absolute achlorhydria. This increase relative to the effects of a full meal is unknown (see .
Hepatotoxicity:
Rare cases of serious hepatotoxicity have been observed with itraconazole treatment, including some cases within the first week. It is recommended that liver function monitoring be considered in all patients receiving itraconazole. Treatment should be stopped immediately and liver function testing should be conducted in patients who develop signs and symptoms suggestive of liver dysfunction.
Neuropathy:
If neuropathy occurs that may be attributable to itraconazole capsules, the treatment should be discontinued.
Cystic Fibrosis:
If a cystic fibrosis patient does not respond to itraconazole capsules, consideration should be given to switching to alternative therapy. For more information concerning the use of itraconazole in cystic fibrosis patients see the prescribing information for itraconazole oral solution.
Hearing Loss:
Transient or permanent hearing loss has been reported in patients receiving treatment with itraconazole. Several of these reports included concurrent administration of quinidine which is contraindicated (see The hearing loss usually resolves when treatment is stopped, but can persist in some patients.
Information for Patients:
Drug Interactions:
Itraconazole is mainly metabolized through CYP3A4. Other drugs that either share this metabolic pathway or modify CYP3A4 activity may influence the pharmacokinetics of itraconazole. Similarly, itraconazole may modify the pharmacokinetics of other drugs that share this metabolic pathway. Itraconazole is a potent CYP3A4 inhibitor and a P-glycoprotein inhibitor. When using concomitant medication, it is recommended that the corresponding label be consulted for information on the route of metabolism and the possible need to adjust dosages.
Drugs that may decrease itraconazole plasma concentrations
Drugs that reduce the gastric acidity (e.g. acid neutralizing medicines such as aluminum hydroxide, or acid secretion suppressors such as H -receptor antagonists and proton pump inhibitors) impair the absorption of itraconazole from itraconazole capsules. It is recommended that these drugs be used with caution when co-administered with itraconazole capsules:
Co-administration of itraconazole with potent enzyme inducers of CYP3A4 may decrease the bioavailability of itraconazole and hydroxy-itraconazole to such an extent that efficacy may be reduced. Examples include:
Therefore, administration of potent enzyme inducers of CYP3A4 with itraconazole is not recommended. It is recommended that the use of these drugs be avoided from 2 weeks before and during treatment with itraconazole, unless the benefits outweigh the risk of potentially reduced itraconazole efficacy. Upon co-administration, it is recommended that the antifungal activity be monitored and the itraconazole dose increased as deemed necessary.
Drugs that may increase itraconazole plasma concentrations
Potent inhibitors of CYP3A4 may increase the bioavailability of itraconazole. Examples include:
It is recommended that these drugs be used with caution when co-administered with itraconazole capsules. It is recommended that patients who must take itraconazole concomitantly with potent inhibitors of CYP3A4 be monitored closely for signs or symptoms of increased or prolonged pharmacologic effects of itraconazole, and the itraconazole dose be decreased as deemed necessary.
Drugs that may have their plasma concentrations increased by itraconazole
Itraconazole and its major metabolite, hydroxy-itraconazole, can inhibit the metabolism of drugs metabolized by CYP3A4 and can inhibit the drug transport by P-glycoprotein, which may result in increased plasma concentrations of these drugs and/or their active metabolite(s) when they are administered with itraconazole. These elevated plasma concentrations may increase or prolong both therapeutic and adverse effects of these drugs. CYP3A4-metabolized drugs known to prolong the QT interval may be contraindicated with itraconazole, since the combination may lead to ventricular tachyarrhythmias including occurrences of torsade de pointes, a potentially fatal arrhythmia. Once treatment is stopped, itraconazole plasma concentrations decrease to an almost undetectable concentration within 7 to 14 days, depending on the dose and duration of treatment. In patients with hepatic cirrhosis or in subjects receiving CYP3A4 inhibitors, the decline in plasma concentrations may be even more gradual. This is particularly important when initiating therapy with drugs whose metabolism is affected by itraconazole.
Examples of drugs that may have their plasma concentrations increased by itraconazole presented by drug class with advice regarding co-administration with itraconazole:
Table 1: Drugs that may have their plasma concentrations increased by itraconazole
Drugs that may have their plasma concentrations decreased by itraconazole
Co-administration of itraconazole with the NSAID meloxicam may decrease the plasma concentration of meloxicam. It is recommended that meloxicam be used with caution when co-administered with itraconazole, and its effects or side effects be monitored. It is recommended that the dosage of meloxicam, if co-administered with itraconazole, be adjusted if necessary.
Pediatric Population
Interaction studies have only been performed in adults.
Carcinogenesis, Mutagenesis, and Impairment of Fertility:
Itraconazole showed no evidence of carcinogenicity potential in mice treated orally for 23 months at dosage levels up to 80 mg/kg/day (approximately 10x the maximum recommended human dose [MRHD]). Male rats treated with 25 mg/kg/day (3.1x MRHD) had a slightly increased incidence of soft tissue sarcoma. These sarcomas may have been a consequence of hypercholesterolemia, which is a response of rats, but not dogs or humans, to chronic itraconazole administration. Female rats treated with 50 mg/kg/day (6.25x MRHD) had an increased incidence of squamous cell carcinoma of the lung (2/50) as compared to the untreated group. Although the occurrence of squamous cell carcinoma in the lung is extremely uncommon in untreated rats, the increase in this study was not statistically significant.
Itraconazole produced no mutagenic effects when assayed in DNA repair test (unscheduled DNA synthesis) in primary rat hepatocytes, in Ames tests with (6 strains) and , in the mouse lymphoma gene mutation tests, in a sex-linked recessive lethal mutation test, in chromosome aberration tests in human lymphocytes, in a cell transformation test with C3H/10T½ C18 mouse embryo fibroblasts cells, in a dominant lethal mutation test in male and female mice, and in micronucleus tests in mice and rats.
Itraconazole did not affect the fertility of male or female rats treated orally with dosage levels of up to 40 mg/kg/day (5x MRHD), even though parental toxicity was present at this dosage level. More severe signs of parental toxicity, including death, were present in the next higher dosage level, 160 mg/kg/day (20x MRHD).
Pregnancy: Teratogenic effects. Pregnancy Category C:
Itraconazole was found to cause a dose-related increase in maternal toxicity, embryotoxicity, and teratogenicity in rats at dosage levels of approximately 40 to 160 mg/kg/day (5 to 20x MRHD), and in mice at dosage levels of approximately 80 mg/kg/day (10x MRHD). Itraconazole has been shown to cross the placenta in a rat model. In rats, the teratogenicity consisted of major skeletal defects; in mice, it consisted of encephaloceles and/or macroglossia.
There are no studies in pregnant women. Itraconazole should be used for the treatment of systemic fungal infections in pregnancy only if the benefit outweighs the potential risk.
Itraconazole should not be administered for the treatment of onychomycosis to pregnant patients or to women contemplating pregnancy. Itraconazole should not be administered to women of childbearing potential for the treatment of onychomycosis unless they are using effective measures to prevent pregnancy and they begin therapy on the second or third day following the onset of menses. Effective contraception should be continued throughout itraconazole therapy and for 2 months following the end of treatment.
During post-marketing experience, cases of congenital abnormalities have been reported (see .
Nursing Mothers:
Itraconazole is excreted in human milk; therefore, the expected benefits of itraconazole therapy for the mother should be weighed against the potential risk from exposure of itraconazole to the infant. The U.S. Public Health Service Centers for Disease Control and Prevention advises HIV-infected women not to breast-feed to avoid potential transmission of HIV to uninfected infants.
Pediatric Use:
The efficacy and safety of itraconazole have not been established in pediatric patients.
The long-term effects of itraconazole on bone growth in children are unknown. In three toxicology studies using rats, itraconazole induced bone defects at dosage levels as low as 20 mg/kg/day (2.5x MRHD). The induced defects included reduced bone plate activity, thinning of the zona compacta of the large bones, and increased bone fragility. At a dosage level of 80 mg/kg/day (10x MRHD) over 1 year or 160 mg/kg/day (20x MRHD) for 6 months, itraconazole induced small tooth pulp with hypocellular appearance in some rats.
Geriatric Use:
Clinical studies of itraconazole capsules did not include sufficient numbers of subjects aged 65 years and over to determine whether they respond differently from younger subjects. It is advised to use itraconazole capsules in these patients only if it is determined that the potential benefit outweighs the potential risks. In general, it is recommended that the dose selection for an elderly patient should be taken into consideration, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
Transient or permanent hearing loss has been reported in elderly patients receiving treatment with itraconazole. Several of these reports included concurrent administration of quinidine which is contraindicated (see
HIV-Infected Patients:
Because hypochlorhydria has been reported in HIV-infected individuals, the absorption of itraconazole in these patients may be decreased.
Renal Impairment:
Limited data are available on the use of oral itraconazole in patients with renal impairment. The exposure of itraconazole may be lower in some patients with renal impairment. Caution should be exercised when itraconazole is administered in this patient population and dose adjustment may be needed (see .
Hepatic Impairment:
Limited data are available on the use of oral itraconazole in patients with hepatic impairment. Caution should be exercised when this drug is administered in this patient population. It is recommended that patients with impaired hepatic function be carefully monitored when taking itraconazole. It is recommended that the prolonged elimination half-life of itraconazole observed in the single oral dose clinical trial with itraconazole capsules in cirrhotic patients be considered when deciding to initiate therapy with other medications metabolized by CYP3A4.
In patients with elevated or abnormal liver enzymes or active liver disease, or who have experienced liver toxicity with other drugs, treatment with itraconazole is strongly discouraged unless there is a serious or life-threatening situation where the expected benefit exceeds the risk. It is recommended that liver function monitoring be done in patients with pre-existing hepatic function abnormalities or those who have experienced liver toxicity with other medications (see .
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice.
Itraconazole has been associated with rare cases of serious hepatotoxicity, including liver failure and death. Some of these cases had neither pre-existing liver disease nor a serious underlying medical condition. If clinical signs or symptoms develop that are consistent with liver disease, treatment should be discontinued and liver function testing performed. The risks and benefits of itraconazole use should be reassessed (see WARNINGS and PRECAUTIONS
Adverse Events in the Treatment of Systemic Fungal Infections
Adverse event data were derived from 602 patients treated for systemic fungal disease in U.S. clinical trials who were immunocompromised or receiving multiple concomitant medications. Treatment was discontinued in 10.5% of patients due to adverse events. The median duration before discontinuation of therapy was 81 days (range: 2 to 776 days). The table lists adverse events reported by at least 1% of patients.
Table 2: Clinical Trials of Systemic Fungal Infections: Adverse Events Occurring with an Incidence of Greater than or Equal to 1%
Adverse events infrequently reported in all studies included constipation, gastritis, depression, insomnia, tinnitus, menstrual disorder, adrenal insufficiency, gynecomastia, and male breast pain.
Adverse Events Reported in Toenail Onychomycosis Clinical Trials
Patients in these trials were on a continuous dosing regimen of 200 mg once daily for 12 consecutive weeks.
The following adverse events led to temporary or permanent discontinuation of therapy.
Table 3: Clinical Trials of Onychomycosis of the Toenail: Adverse Events Leading to Temporary or Permanent Discontinuation of Therapy
The following adverse events occurred with an incidence of greater than or equal to 1% (N=112): headache: 10%; rhinitis: 9%; upper respiratory tract infection: 8%; sinusitis, injury: 7%; diarrhea, dyspepsia, flatulence, abdominal pain, dizziness, rash: 4%; cystitis, urinary tract infection, liver function abnormality, myalgia, nausea: 3%; appetite increased, constipation, gastritis, gastroenteritis, pharyngitis, asthenia, fever, pain, tremor, herpes zoster, abnormal dreaming: 2%.
Adverse Events Reported in Fingernail Onychomycosis Clinical Trials
Patients in these trials were on a dosing regimen consisting of two 1-week treatment periods of 200 mg twice daily, separated by a 3-week period without drug.
The following adverse events led to temporary or permanent discontinuation of therapy.
Table 4: Clinical Trials of Onychomycosis of the Fingernail: Adverse Events Leading to Temporary or Permanent Discontinuation of Therapy
The following adverse events occurred with an incidence of greater than or equal to 1% (N=37): headache: 8%; pruritus, nausea, rhinitis: 5%; rash, bursitis, anxiety, depression, constipation, abdominal pain, dyspepsia, ulcerative stomatitis, gingivitis, hypertriglyceridemia, sinusitis, fatigue, malaise, pain, injury: 3%.
Adverse Events Reported from Other Clinical Trials
In addition, the following adverse drug reaction was reported in patients who participated in itraconazole capsules clinical trials: hyperbilirubinemia.
The following is a list of additional adverse drug reactions associated with itraconazole that have been reported in clinical trials of itraconazole oral solution and itraconazole IV excluding the adverse reaction term “Injection site inflammation” which is specific to the injection route of administration:
Cardiac Disorders:
General Disorders and Administration Site Conditions:
Hepatobiliary Disorders:
Investigations:
Metabolism and Nutrition Disorders:
Psychiatric Disorders:
Renal and Urinary Disorders:
Respiratory, Thoracic and Mediastinal Disorders:
Skin and Subcutaneous Tissue Disorders:
Vascular Disorders:
Post-marketing Experience
Adverse drug reactions that have been first identified during post-marketing experience with itraconazole (all formulations) are listed in the table below. Because these reactions are reported voluntarily from a population of uncertain size, reliably estimating their frequency or establishing a causal relationship to drug exposure is not always possible.
Table 5: Postmarketing Reports of Adverse Drug Reactions
There is limited information on the use of itraconazole during pregnancy. Cases of congenital abnormalities including skeletal, genitourinary tract, cardiovascular and ophthalmic malformations as well as chromosomal and multiple malformations have been reported during post-marketing experience. A causal relationship with itraconazole has not been established (see for more information).
To report SUSPECTED ADVERSE REACTIONS contact AvKARE, Inc. at 1-855-361-3993; email ; or FDA at 1-800-FDA-1088 or .
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).