Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Lidocaine Hydrochloride and Dextrose

×

Overview

What is Lidocaine Hydrochloride and Dextrose?

5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP is a sterile, nonpyrogenic, hyperbaric solution for use in spinal anesthesia.

5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP contains lidocaine HCl, which is chemically designated as 2-(diethylamino)-N-(2,6-dimethylphenyl)-acetamide monohydrochloride, monohydrate and Dextrose (D-Glucose monohydrate) which have the following structural formulas:

Lidocaine Hydrochloride (monohydrate)

Dextrose (hydrous)

5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP contains 50 mg/mL of lidocaine hydrochloride, anhydrous with 75 mg/mL of dextrose, hydrous in water for injection. May contain sodium hydroxide and/or hydrochloric acid for pH adjustment. pH 6.5 (6.0 to 7.0). The osmolar concentration is 0.75 mOsmol/mL (calc.). The specific gravity is 1.030 to 1.035.



What does Lidocaine Hydrochloride and Dextrose look like?



What are the available doses of Lidocaine Hydrochloride and Dextrose?

Sorry No records found.

What should I talk to my health care provider before I take Lidocaine Hydrochloride and Dextrose?

Sorry No records found

How should I use Lidocaine Hydrochloride and Dextrose?

5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP is indicated for the production of spinal anesthesia when the accepted procedures for this technique as described in standard textbooks are observed.

Spinal anesthesia with 5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP may be induced in the right or left lateral recumbent or the sitting position. Since this is a hyperbaric solution, the anesthetic will tend to move in the direction in which the table is tilted. After the desired level of anesthesia is obtained and the anesthetic has become fixed, usually in 5 to 10 minutes with lidocaine, the patient may be positioned according to the requirement of the surgeon or obstetrician.

In clinical trials, the safety of hyperbaric lidocaine for single injection spinal anesthesia was demonstrated using 22 or 25 gauge spinal needles. In these studies, free flow of CSF was visible before injection of lidocaine.

Neurologic deficits have been reported with the use of small bore needles and microcatheters for spinal anesthesia. It has been postulated, based on models, that these deficits were caused by pooling and non-uniform distribution of concentrated local anesthetic within the subarachnoid space. Animal studies suggest mixing of 5% lidocaine hydrochloride with an equal volume of CSF or preservative-free 0.9% saline solution may reduce the risk of nerve injury due to pooling of concentrated local anesthetic (see ).

Intrathecal distribution of anesthetic may be facilitated by using a spinal needle of sufficient gauge to insure adequate withdrawal of CSF through the needle prior to and after anesthetic administration. If the technique is properly placed in the subarachnoid space, a separate injection is seldom necessary.

An incomplete or patchy block not responsive to patient repositioning may indicate misplacement or inadequate distribution of drug. To avoid excessive drug pooling, additional doses of lidocaine should not be administered with the same needle placement.

INJECTIONS SHOULD BE MADE SLOWLY. Consult standard textbooks for specific techniques for spinal anesthetic procedures.

There have been adverse event reports of chondrolysis in patients receiving intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures. 5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP is not approved for this use (see and ).


What interacts with Lidocaine Hydrochloride and Dextrose?


  • Lidocaine is contraindicated in patients with a known history of hypersensitivity to local anesthetics of the amide type.

    • Severe hemorrhage, shock or heart block
    • Local infection at the site of proposed puncture
    • Septicemia
    • Known sensitivity to the local anesthetic agent.

  • The following conditions preclude the use of spinal anesthesia:



What are the warnings of Lidocaine Hydrochloride and Dextrose?

Array

5% LIDOCAINE HYDROCHLORIDE AND 7.5% DEXTROSE INJECTION, USP FOR SPINAL ANESTHESIA SHOULD BE EMPLOYED ONLY BY CLINICIANS WHO ARE WELL VERSED IN DIAGNOSIS AND MANAGEMENT OF DOSE-RELATED TOXICITY AND OTHER ACUTE EMERGENCIES THAT MIGHT ARISE FROM SPINAL ANESTHESIA AND THEN ONLY AFTER ENSURING THE AVAILABILITY OF OXYGEN, OTHER RESUSCITATIVE DRUGS, CARDIOPULMONARY EQUIPMENT, AND THE PERSONNEL NEEDED FOR PROPER MANAGEMENT OF TOXIC REACTIONS AND RELATED EMERGENCIES (see also and ). DELAY IN PROPER MANAGEMENT OF DOSE-RELATED TOXICITY, UNDERVENTILATION FROM ANY CAUSE AND/OR ALTERED SENSITIVITY MAY LEAD TO THE DEVELOPMENT OF ACIDOSIS, CARDIAC ARREST AND, POSSIBLY, DEATH.

Intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures is an unapproved use, and there have been post-marketing reports of chondrolysis in patients receiving such infusions. The majority of reported cases of chondrolysis have involved the shoulder joint; cases of gleno-humeral chondrolysis have been described in pediatric and adult patients following intra-articular infusions of local anesthetics with and without epinephrine for periods of 48 to 72 hours. There is insufficient information to determine whether shorter infusion periods are not associated with these findings. The time of onset of symptoms, such as joint pain, stiffness and loss of motion can be variable, but may begin as early as the 2nd month after surgery. Currently, there is no effective treatment for chondrolysis; patients who experienced chondrolysis have required additional diagnostic and therapeutic procedures and some required arthroplasty or shoulder replacement.

To avoid intravascular injection, aspiration should be performed before the local anesthetic solution is injected. The needle must be repositioned until no return of blood can be elicited by aspiration. Note, however, that the absence of blood in the syringe does not guarantee that intravascular injection has been avoided.

Spinal anesthetics should not be injected during uterine contractions since spinal fluid current may carry the drug farther cephalad than desired.


What are the precautions of Lidocaine Hydrochloride and Dextrose?

General

  • Pre-existing diseases of the central nervous system such as those attributable to poliomyelitis, pernicious anemia, paralysis from nerve injuries, and syphilis.
  • Disturbance in blood morphology and/or anticoagulant therapy. In these conditions, trauma to a blood vessel during needle puncture may result in uncontrollable hemorrhage into the epidural or subarachnoid space. Also profuse hemorrhage into the soft tissue may occur.
  • Extremes of age.
  • Chronic backache and preoperative headache.
  • Hypotension and hypertension.
  • Arthritis or spinal deformity.
  • Technical problems (persistent paresthesias, persistent bloody tap).
  • Psychotic or uncooperative patients.


The safety and effectiveness of lidocaine depend on proper dosage, correct technique, adequate precautions, and readiness for emergencies. Standard textbooks should be consulted for specific techniques and precautions for spinal anesthetic procedures. Resuscitative equipment, oxygen and other resuscitative drugs should be available for immediate use (see and ). The lowest dosage that results in effective anesthesia should be used to avoid high plasma levels and serious adverse effects. Repeated doses of lidocaine may cause significant increases in blood levels with each repeated dose because of slow accumulation of the drug or its metabolites. Tolerance to elevated blood levels varies with the physical condition of the patient. Debilitated, elderly patients, acutely ill patients and children should be given reduced doses commensurate with their age and physical status. Lidocaine should also be used with caution in patients with severe shock or heart block.

Neurologic deficits have been reported with the use of small bore needles and microcatheters for spinal anesthesia. It has been postulated, based on models, that these deficits were due to pooling and non-uniform distribution of concentrated local anesthesia within the subarachnoid space. Animal studies suggest mixing of 5% lidocaine hydrochloride with an equal volume of CSF or preservative-free 0.9% saline solution may reduce the risk of nerve injury due to pooling of concentrated local anesthetic (see ).

The following conditions may preclude the use of spinal anesthesia, depending upon the physician's ability to deal with the complications or complaints that may occur:

CONSULT STANDARD TEXTBOOKS FOR SPECIFIC TECHNIQUES AND PRECAUTIONS FOR SPINAL ANESTHETIC PROCEDURES.

Careful and constant monitoring of cardiovascular and respiratory (adequacy of ventilation) vital signs and the patient's state of consciousness should be accomplished after each local anesthetic injection. It should be kept in mind at such times that restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors, depression or drowsiness may be early warning signs of central nervous system toxicity.

Since amide-type local anesthetics are metabolized by the liver, lidocaine should be used with caution in patients with hepatic disease. Patients with severe hepatic disease, because of their inability to metabolize local anesthetic normally, are a greater risk of developing toxic plasma concentrations. Lidocaine should also be used with caution in patients with impaired cardiovascular function since they may be less able to compensate for functional changes associated with the prolongation of A-V conduction produced by these drugs.

Many drugs used during the conduct of anesthesia are considered potential triggering agents for familial malignant hyperthermia. Since it is not known whether amide-type local anesthetics may trigger this reaction and since the need for supplemental general anesthesia cannot be predicted in advance, it is suggested that a standard protocol for management should be available. Early unexplained signs of tachycardia, tachypnea, labile blood pressure and metabolic acidosis may precede temperature elevation. Successful outcome is dependent on early diagnosis, prompt discontinuance of the suspect triggering agent(s) and institution of treatment including oxygen therapy, indicated supportive measures and dantrolene (consult dantrolene sodium intravenous package insert before using).

Lidocaine should be used with caution in persons with known drug sensitivities. Patients allergic to para-aminobenzoic acid derivatives (procaine, tetracaine, benzocaine, etc.) have not shown cross sensitivity to lidocaine.

Information for Patients

When appropriate, patients should be informed in advance that they may experience temporary loss of sensation and motor activity, usually in the lower half of the body, following proper administration of spinal anesthesia.

Clinically significant drug interactions

The administration of local anesthetic solutions containing epinephrine or norepinephrine to patients receiving monoamine oxidase inhibitors, tricyclic antidepressants or phenothiazines may produce severe, prolonged hypotension or hypertension. Concurrent use of these agents should generally be avoided. In situations when concurrent therapy is necessary, careful patient monitoring is essential.

Concurrent administration of vasopressor drugs (for the treatment of hypotension related to spinal blocks) and ergot-type oxytocic drugs may cause severe, persistent hypertension or cerebrovascular accidents.

Carcinogenesis, mutagenesis, impairment of fertility

Studies of lidocaine in animals to evaluate the carcinogenic and mutagenic potential or the effect on fertility have not been conducted.

Use in Pregnancy

Reproduction studies have been performed in rats at doses up to 6.6 times the human dose and have revealed no evidence of harm to the fetus caused by lidocaine. There are, however, no adequate and well-controlled studies in pregnant women. Animal reproduction studies are not always predictive of human response. General consideration should be given to this fact before administering lidocaine to women of childbearing potential, especially during early pregnancy when maximum organogenesis takes place.

Labor and delivery

Maternal hypotension has resulted from regional anesthesia. Local anesthetics produce vasodilation by blocking sympathetic nerves. Elevating the patient's legs and positioning her on her left side will help prevent decreases in blood pressure. The fetal heart rate also should be monitored continuously, and electronic fetal monitoring is highly advisable.

Spinal anesthesia may alter the forces of parturition through changes in uterine contractility or maternal expulsive efforts. However, spinal anesthesia has also been reported to prolong the second stage of labor by removing the parturient's reflex urge to bear down or by interfering with motor function. The use of obstetrical anesthesia may increase the need for forceps assistance.

Nursing mothers

It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when lidocaine is administered to a nursing woman.

Pediatric use

Safety and effectiveness in pediatric patients below the age of 16 years have not been established.


What are the side effects of Lidocaine Hydrochloride and Dextrose?

Adverse experiences following the administration of lidocaine are similar in nature to those observed with other amide local anesthetic agents. These adverse experiences are, in general, dose-related and may result from high plasma levels caused by excessive dosage, rapid absorption or inadvertent intravascular injection, or may result from a hypersensitivity, idiosyncrasy or diminished tolerance on the part of the patient. Serious adverse experiences are generally systemic in nature. The following types are those most commonly reported:

Central nervous system

CNS manifestations are excitatory and/or depressant and may be characterized by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, lethargy, slurred speech, drowsiness, tinnitus, blurred or double vision, vomiting, sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness, respiratory depression and arrest. The excitatory manifestations may be very brief or may not occur at all, in which case the first manifestation of toxicity may be drowsiness merging into unconsciousness and respiratory arrest.

Drowsiness following the administration of lidocaine is usually an early sign of a high blood level of the drug and may occur as a consequence of rapid absorption.

Cardiovascular system

Cardiovascular manifestations are usually depressant and are characterized by bradycardia, hypotension, and cardiovascular collapse, which may lead to cardiac arrest.

Allergic

Allergic reactions are characterized by cutaneous lesions, urticaria, edema or anaphylactoid reactions. Allergic reactions as a result of sensitivity to lidocaine are extremely rare and, if they occur, should be managed by conventional means. The detection of sensitivity by skin testing is of doubtful value.

Neurologic

The incidences of adverse reactions associated with the use of local anesthetics may be related to the total dose of local anesthetic administered and are also dependent upon the particular drug used, the route of administration and the physical status of the patient. In a prospective review of 10,440 patients who received lidocaine for spinal anesthesia, the incidences of adverse reactions were reported to be about 3 percent each for positional headaches, hypotension and backache; 2 percent for shivering; and less than 1 percent each for peripheral nerve symptoms, nausea, respiratory inadequacy and double vision. Many of these observations may be related to local anesthetic techniques, with or without a contribution from the local anesthetic.

Neurologic effects following spinal anesthesia may include loss of perineal sensation and sexual function; persistent anesthesia, paresthesia, weakness and paralysis of the lower extremities, and loss of sphincter control all of which may have slow, incomplete, or no recovery; hypotension; high or total spinal block; urinary retention; headache; backache; septic meningitis; meningismus, arachnoiditis; slowing of labor; increased incidence of forceps delivery; shivering; cranial nerve palsies due to traction on nerves from loss of cerebrospinal fluid; and fecal and urinary incontinence.


What should I look out for while using Lidocaine Hydrochloride and Dextrose?

Lidocaine is contraindicated in patients with a known history of hypersensitivity to local anesthetics of the amide type.

The following conditions preclude the use of spinal anesthesia:

5% LIDOCAINE HYDROCHLORIDE AND 7.5% DEXTROSE INJECTION, USP FOR SPINAL ANESTHESIA SHOULD BE EMPLOYED ONLY BY CLINICIANS WHO ARE WELL VERSED IN DIAGNOSIS AND MANAGEMENT OF DOSE-RELATED TOXICITY AND OTHER ACUTE EMERGENCIES THAT MIGHT ARISE FROM SPINAL ANESTHESIA AND THEN ONLY AFTER ENSURING THE AVAILABILITY OF OXYGEN, OTHER RESUSCITATIVE DRUGS, CARDIOPULMONARY EQUIPMENT, AND THE PERSONNEL NEEDED FOR PROPER MANAGEMENT OF TOXIC REACTIONS AND RELATED EMERGENCIES (see also and ). DELAY IN PROPER MANAGEMENT OF DOSE-RELATED TOXICITY, UNDERVENTILATION FROM ANY CAUSE AND/OR ALTERED SENSITIVITY MAY LEAD TO THE DEVELOPMENT OF ACIDOSIS, CARDIAC ARREST AND, POSSIBLY, DEATH.

Intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures is an unapproved use, and there have been post-marketing reports of chondrolysis in patients receiving such infusions. The majority of reported cases of chondrolysis have involved the shoulder joint; cases of gleno-humeral chondrolysis have been described in pediatric and adult patients following intra-articular infusions of local anesthetics with and without epinephrine for periods of 48 to 72 hours. There is insufficient information to determine whether shorter infusion periods are not associated with these findings. The time of onset of symptoms, such as joint pain, stiffness and loss of motion can be variable, but may begin as early as the 2nd month after surgery. Currently, there is no effective treatment for chondrolysis; patients who experienced chondrolysis have required additional diagnostic and therapeutic procedures and some required arthroplasty or shoulder replacement.

To avoid intravascular injection, aspiration should be performed before the local anesthetic solution is injected. The needle must be repositioned until no return of blood can be elicited by aspiration. Note, however, that the absence of blood in the syringe does not guarantee that intravascular injection has been avoided.

Spinal anesthetics should not be injected during uterine contractions since spinal fluid current may carry the drug farther cephalad than desired.


What might happen if I take too much Lidocaine Hydrochloride and Dextrose?

Acute emergencies from local anesthetics are generally related to high plasma levels encountered during therapeutic use of local anesthetics or to unintended subarachnoid injection of local anesthetic solution (see , , and ).


How should I store and handle Lidocaine Hydrochloride and Dextrose?

Array5% Lidocaine Hydrochloride and 7.5% Dextrose Injection, USP, is supplied in the following:


×

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

Lidocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action.

Non-Clinical Toxicology
Lidocaine is contraindicated in patients with a known history of hypersensitivity to local anesthetics of the amide type.

The following conditions preclude the use of spinal anesthesia:

5% LIDOCAINE HYDROCHLORIDE AND 7.5% DEXTROSE INJECTION, USP FOR SPINAL ANESTHESIA SHOULD BE EMPLOYED ONLY BY CLINICIANS WHO ARE WELL VERSED IN DIAGNOSIS AND MANAGEMENT OF DOSE-RELATED TOXICITY AND OTHER ACUTE EMERGENCIES THAT MIGHT ARISE FROM SPINAL ANESTHESIA AND THEN ONLY AFTER ENSURING THE AVAILABILITY OF OXYGEN, OTHER RESUSCITATIVE DRUGS, CARDIOPULMONARY EQUIPMENT, AND THE PERSONNEL NEEDED FOR PROPER MANAGEMENT OF TOXIC REACTIONS AND RELATED EMERGENCIES (see also and ). DELAY IN PROPER MANAGEMENT OF DOSE-RELATED TOXICITY, UNDERVENTILATION FROM ANY CAUSE AND/OR ALTERED SENSITIVITY MAY LEAD TO THE DEVELOPMENT OF ACIDOSIS, CARDIAC ARREST AND, POSSIBLY, DEATH.

Intra-articular infusions of local anesthetics following arthroscopic and other surgical procedures is an unapproved use, and there have been post-marketing reports of chondrolysis in patients receiving such infusions. The majority of reported cases of chondrolysis have involved the shoulder joint; cases of gleno-humeral chondrolysis have been described in pediatric and adult patients following intra-articular infusions of local anesthetics with and without epinephrine for periods of 48 to 72 hours. There is insufficient information to determine whether shorter infusion periods are not associated with these findings. The time of onset of symptoms, such as joint pain, stiffness and loss of motion can be variable, but may begin as early as the 2nd month after surgery. Currently, there is no effective treatment for chondrolysis; patients who experienced chondrolysis have required additional diagnostic and therapeutic procedures and some required arthroplasty or shoulder replacement.

To avoid intravascular injection, aspiration should be performed before the local anesthetic solution is injected. The needle must be repositioned until no return of blood can be elicited by aspiration. Note, however, that the absence of blood in the syringe does not guarantee that intravascular injection has been avoided.

Spinal anesthetics should not be injected during uterine contractions since spinal fluid current may carry the drug farther cephalad than desired.

The administration of local anesthetic solutions containing epinephrine or norepinephrine to patients receiving monoamine oxidase inhibitors, tricyclic antidepressants or phenothiazines may produce severe, prolonged hypotension or hypertension. Concurrent use of these agents should generally be avoided. In situations when concurrent therapy is necessary, careful patient monitoring is essential.

Concurrent administration of vasopressor drugs (for the treatment of hypotension related to spinal blocks) and ergot-type oxytocic drugs may cause severe, persistent hypertension or cerebrovascular accidents.

The safety and effectiveness of lidocaine depend on proper dosage, correct technique, adequate precautions, and readiness for emergencies. Standard textbooks should be consulted for specific techniques and precautions for spinal anesthetic procedures. Resuscitative equipment, oxygen and other resuscitative drugs should be available for immediate use (see and ). The lowest dosage that results in effective anesthesia should be used to avoid high plasma levels and serious adverse effects. Repeated doses of lidocaine may cause significant increases in blood levels with each repeated dose because of slow accumulation of the drug or its metabolites. Tolerance to elevated blood levels varies with the physical condition of the patient. Debilitated, elderly patients, acutely ill patients and children should be given reduced doses commensurate with their age and physical status. Lidocaine should also be used with caution in patients with severe shock or heart block.

Neurologic deficits have been reported with the use of small bore needles and microcatheters for spinal anesthesia. It has been postulated, based on models, that these deficits were due to pooling and non-uniform distribution of concentrated local anesthesia within the subarachnoid space. Animal studies suggest mixing of 5% lidocaine hydrochloride with an equal volume of CSF or preservative-free 0.9% saline solution may reduce the risk of nerve injury due to pooling of concentrated local anesthetic (see ).

The following conditions may preclude the use of spinal anesthesia, depending upon the physician's ability to deal with the complications or complaints that may occur:

CONSULT STANDARD TEXTBOOKS FOR SPECIFIC TECHNIQUES AND PRECAUTIONS FOR SPINAL ANESTHETIC PROCEDURES.

Careful and constant monitoring of cardiovascular and respiratory (adequacy of ventilation) vital signs and the patient's state of consciousness should be accomplished after each local anesthetic injection. It should be kept in mind at such times that restlessness, anxiety, tinnitus, dizziness, blurred vision, tremors, depression or drowsiness may be early warning signs of central nervous system toxicity.

Since amide-type local anesthetics are metabolized by the liver, lidocaine should be used with caution in patients with hepatic disease. Patients with severe hepatic disease, because of their inability to metabolize local anesthetic normally, are a greater risk of developing toxic plasma concentrations. Lidocaine should also be used with caution in patients with impaired cardiovascular function since they may be less able to compensate for functional changes associated with the prolongation of A-V conduction produced by these drugs.

Many drugs used during the conduct of anesthesia are considered potential triggering agents for familial malignant hyperthermia. Since it is not known whether amide-type local anesthetics may trigger this reaction and since the need for supplemental general anesthesia cannot be predicted in advance, it is suggested that a standard protocol for management should be available. Early unexplained signs of tachycardia, tachypnea, labile blood pressure and metabolic acidosis may precede temperature elevation. Successful outcome is dependent on early diagnosis, prompt discontinuance of the suspect triggering agent(s) and institution of treatment including oxygen therapy, indicated supportive measures and dantrolene (consult dantrolene sodium intravenous package insert before using).

Lidocaine should be used with caution in persons with known drug sensitivities. Patients allergic to para-aminobenzoic acid derivatives (procaine, tetracaine, benzocaine, etc.) have not shown cross sensitivity to lidocaine.

Adverse experiences following the administration of lidocaine are similar in nature to those observed with other amide local anesthetic agents. These adverse experiences are, in general, dose-related and may result from high plasma levels caused by excessive dosage, rapid absorption or inadvertent intravascular injection, or may result from a hypersensitivity, idiosyncrasy or diminished tolerance on the part of the patient. Serious adverse experiences are generally systemic in nature. The following types are those most commonly reported:

×

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

×

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
×

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
×

Tips

Tips

×

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).