Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Methotrexate
Overview
What is Rheumatrex?
Methotrexate (formerly Amethopterin) is an antimetabolite used in the treatment of certain neoplastic diseases, severe psoriasis, and adult rheumatoid arthritis.
Chemically methotrexate is -[4-[[(2,4-diamino-6-pteridinyl)methyl]methylamino]benzoyl]-L-glutamic acid. The structural formula is:
Molecular weight: 454.45 CHNO
Methotrexate Tablets, USP for oral administration are available in a packaging system designated as the RHEUMATREX Methotrexate Tablets, USP Dose Pack for therapy with a weekly dosing schedule of 5 mg, 7.5 mg, 10 mg, 12.5 mg, 15 mg, 17.5 mg and 20 mg. Methotrexate Tablets, USP contain an amount of methotrexate sodium equivalent to 2.5 mg of methotrexate and the following inactive ingredients: Lactose, Magnesium Stearate and Pregelatinized Starch.
What does Rheumatrex look like?
What are the available doses of Rheumatrex?
Sorry No records found.
What should I talk to my health care provider before I take Rheumatrex?
Sorry No records found
How should I use Rheumatrex?
Methotrexate is indicated in the treatment of gestational choriocarcinoma, chorio-adenoma destruens and hydatidiform mole.
Methotrexate is used in maintenance therapy in combination with other chemotherapeutic agents.
Methotrexate is used alone or in combination with other anticancer agents in the treatment of breast cancer, epidermoid cancers of the head and neck, advanced mycosis fungoides (cutaneous T cell lymphoma), and lung cancer, particularly squamous cell and small cell types. Methotrexate is also used in combination with other chemotherapeutic agents in the treatment of advanced stage non-Hodgkin’s lymphomas.
Oral administration in tablet form is often preferred when low doses are being administered since absorption is rapid and effective serum levels are obtained.
Choriocarcinoma and similar trophoblastic diseases
Since hydatidiform mole may precede choriocarcinoma, prophylactic chemotherapy with methotrexate has been recommended.
Chorioadenoma destruens is considered to be an invasive form of hydatidiform mole. Methotrexate is administered in these disease states in doses similar to those recommended for choriocarcinoma.
Leukemia
Methotrexate alone or in combination with steroids was used initially for induction of remission in acute lymphoblastic leukemias. More recently corticosteroid therapy, in combination with other antileukemic drugs or in cyclic combinations with methotrexate included, has appeared to produce rapid and effective remissions. When used for induction, methotrexate in doses of 3.3 mg/m in combination with 60 mg/m of prednisone, given daily, produced remissions in 50% of patients treated, usually within a period of 4 to 6 weeks. Methotrexate in combination with other agents appears to be the drug of choice for securing maintenance of drug-induced remissions. When remission is achieved and supportive care has produced general clinical improvement, maintenance therapy is initiated, as follows: Methotrexate is administered 2 times weekly either by mouth or intramuscularly in total weekly doses of 30 mg/m. It has also been given in doses of 2.5 mg/kg intravenously every 14 days. If and when relapse does occur, reinduction of remission can again usually be obtained by repeating the initial induction regimen.
A variety of combination chemotherapy regimens have been used for both induction and maintenance therapy in acute lymphoblastic leukemia. The physician should be familiar with the new advances in antileukemic therapy.
Lymphomas
Mycosis Fungoides (cutaneous T cell lymphoma)
What interacts with Rheumatrex?
Methotrexate can cause fetal death or teratogenic effects when administered to a pregnant woman. Methotrexate is contraindicated in pregnant women with psoriasis or rheumatoid arthritis and should be used in the treatment of neoplastic diseases only when the potential benefit outweighs the risk to the fetus. Women of childbearing potential should not be started on methotrexate until pregnancy is excluded and should be fully counseled on the serious risk to the fetus (See ) should they become pregnant while undergoing treatment. Pregnancy should be avoided if either partner is receiving methotrexate; during and for a minimum of three months after therapy for male patients, and during and for at least one ovulatory cycle after therapy for female patients. (See .)
Because of the potential for serious adverse reactions from methotrexate in breast fed infants, it is contraindicated in nursing mothers.
Patients with psoriasis or rheumatoid arthritis with alcoholism, alcoholic liver disease or other chronic liver disease should not receive methotrexate.
Patients with psoriasis or rheumatoid arthritis who have overt or laboratory evidence of immunodeficiency syndromes should not receive methotrexate.
Patients with psoriasis or rheumatoid arthritis who have preexisting blood dyscrasias, such as bone marrow hypoplasia, leukopenia, thrombocytopenia or significant anemia, should not receive methotrexate.
Patients with a known hypersensitivity to methotrexate should not receive the drug.
What are the warnings of Rheumatrex?
Photosensitivity manifested by an exaggerated sunburn reaction has been observed in some individuals taking tetracyclines. Patients apt to be exposed to direct sunlight or ultraviolet light should be advised that this reaction can occur with tetracycline drugs, and treatment should be discontinued at the first evidence of skin erythema.
SEE .
Methotrexate formulations and diluents containing preservatives must not be used for intrathecal or high dose methotrexate therapy.
What are the precautions of Rheumatrex?
General
Methotrexate has the potential for serious toxicity. (See
.) Toxic effects may be related in frequency and severity to dose or frequency of administration but have been seen at all doses. Because they can occur at any time during therapy, it is necessary to follow patients on methotrexate closely. Most adverse reactions are reversible if detected early. When such reactions do occur, the drug should be reduced in dosage or discontinued and appropriate corrective measures should be taken. If necessary, this could include the use of leucovorin calcium and/or acute, intermittent hemodialysis with a high-flux dialyzer. (See .) If methotrexate therapy is reinstituted, it should be carried out with caution, with adequate consideration of further need for the drug and with increased alertness as to possible recurrence of toxicity.
The clinical pharmacology of methotrexate has not been well studied in older individuals. Due to diminished hepatic and renal function as well as decreased folate stores in this population, relatively low doses should be considered, and these patients should be closely monitored for early signs of toxicity.
Information for Patients
Patients should be informed of the early signs and symptoms of toxicity, of the need to see their physician promptly if they occur, and the need for close follow-up, including periodic laboratory tests to monitor toxicity.
Both the physician and pharmacist should emphasize to the patient that the recommended dose is taken weekly in rheumatoid arthritis and psoriasis, and that mistaken daily use of the recommended dose has led to fatal toxicity. Patients should be encouraged to read the Patient Instructions sheet within the Dose Pack. Prescriptions should not be written or refilled on a PRN basis.
Patients should be informed of the potential benefit and risk in the use of methotrexate. The risk of effects on reproduction should be discussed with both male and female patients taking methotrexate.
Laboratory Tests
Patients undergoing methotrexate therapy should be closely monitored so that toxic effects are detected promptly. Baseline assessment should include a complete blood count with differential and platelet counts, hepatic enzymes, renal function tests, and a chest X-ray. During therapy of rheumatoid arthritis and psoriasis, monitoring of these parameters is recommended: hematology at least monthly, renal function and liver function every 1 to 2 months. More frequent monitoring is usually indicated during antineoplastic therapy. , or during periods of increased risk of elevated methotrexate blood levels (eg, dehydration), more frequent monitoring may also be indicated.
Transient liver function test abnormalities are observed frequently after methotrexate administration and are usually not cause for modification of methotrexate therapy. Persistent liver function test abnormalities, and/or depression of serum albumin may be indicators of serious liver toxicity and require evaluation. (See
.)
A relationship between abnormal liver function tests and fibrosis or cirrhosis of the liver has not been established for patients with psoriasis. Persistent abnormalities in liver function tests may precede appearance of fibrosis or cirrhosis in the rheumatoid arthritis population.
Pulmonary function tests may be useful if methotrexate-induced lung disease is suspected, especially if baseline measurements are available.
Drug Interactions
Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate levels, resulting in deaths from severe hematologic and gastrointestinal toxicity.
Caution should be used when NSAIDs and salicylates are administered concomitantly with lower doses of methotrexate. These drugs have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity.
Despite the potential interactions, studies of methotrexate in patients with rheumatoid arthritis have usually included concurrent use of constant dosage regimens of NSAIDs, without apparent problems. It should be appreciated, however, that the doses used in rheumatoid arthritis (7.5 to 20 mg/wk) are somewhat lower than those used in psoriasis and that larger doses could lead to unexpected toxicity.
Methotrexate is partially bound to serum albumin, and toxicity may be increased because of displacement by certain drugs, such as salicylates, phenylbutazone, phenytoin, and sulfonamides. Renal tubular transport is also diminished by probenecid; use of methotrexate with this drug should be carefully monitored.
Oral antibiotics such as tetracycline, chloramphenicol, and nonabsorbable broad spectrum antibiotics, may decrease intestinal absorption of methotrexate or interfere with the enterohepatic circulation by inhibiting bowel flora and suppressing metabolism of the drug by bacteria.
Penicillins may reduce the renal clearance of methotrexate; increased serum concentrations of methotrexate with concomitant hematologic and gastrointestinal toxicity have been observed with methotrexate. Use of methotrexate with penicillins should be carefully monitored.
The potential for increased hepatotoxicity when methotrexate is administered with other hepatotoxic agents has not been evaluated. However, hepatotoxicity has been reported in such cases. Therefore, patients receiving concomitant therapy with methotrexate and other potential hepatotoxins (eg, azathioprine, retinoids, sulfa-salazine) should be closely monitored for possible increased risk of hepatotoxicity.
Methotrexate may decrease the clearance of theophylline; theophylline levels should be monitored when used concurrently with methotrexate.
Certain side effects such as mouth sores may be reduced by folate supplementation with methotrexate.
Trimethoprim/sulfa-methoxazole has been reported rarely to increase bone marrow suppression in patients receiving methotrexate, probably by an additive antifolate effect.
Carcinogenesis, Mutagenesis, and Impairment of Fertility
No controlled human data exist regarding the risk of neoplasia with methotrexate. Methotrexate has been evaluated in a number of animal studies for carcinogenic potential with inconclusive results. Although there is evidence that methotrexate causes chromosomal damage to animal somatic cells and human bone marrow cells, the clinical significance remains uncertain. Non-Hodgkin’s lymphoma and other tumors have been reported in patients receiving low-dose oral methotrexate. However, there have been instances of malignant lymphoma arising during treatment with low-dose oral methotrexate, which have regressed completely following withdrawal of methotrexate, without requiring active anti-lymphoma treatment. Benefits should be weighed against the potential risks before using methotrexate alone or in combination with other drugs, especially in pediatric patients or young adults. Methotrexate causes embryotoxicity, abortion, and fetal defects in humans. It has also been reported to cause impairment of fertility, oligospermia and menstrual dysfunction in humans, during and for a short period after cessation of therapy.
Pregnancy
Psoriasis and rheumatoid arthritis: Methotrexate is in Pregnancy Category X. See .
Nursing Mothers
See .
Pediatric Use
Safety and effectiveness in pediatric patients have been established only in cancer chemotherapy and in polyarticular-course juvenile rheumatoid arthritis.
Published clinical studies evaluating the use of methotrexate in children and adolescents (ie, patients 2 to 16 years of age) with JRA demonstrated safety comparable to that observed in adults with rheumatoid arthritis. (See and .)
Geriatric Use
Clinical studies of methotrexate did not include sufficient numbers of subjects age 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for an elderly patient should be cautious reflecting the greater frequency of decreased hepatic and renal function, decreased folate stores, concomitant disease or other drug therapy (ie, that interfere with renal function, methotrexate or folate metabolism) in this population (See ). Since decline in renal function may be associated with increases in adverse events and serum creatinine measurements may over estimate renal function in the elderly, more accurate methods (ie, creatine clearance) should be considered. Serum methotrexate levels may also be helpful. Elderly patients should be closely monitored for early signs of hepatic, bone marrow and renal toxicity. In chronic use situations, certain toxicities may be reduced by folate supplementation. Post-marketing experience suggests that the occurence of bone marrow suppression, thrombocytopenia, and pneumonitis may increase with age. See
and .
Organ System Toxicity
Gastrointestinal
Hematologic
In psoriasis and rheumatoid arthritis, methotrexate should be stopped immediately if there is a significant drop in blood counts. In the treatment of neoplastic diseases, methotrexate should be continued only if the potential benefit warrants the risk of severe myelosuppression. Patients with profound granulocytopenia and fever should be evaluated immediately and usually require parenteral broad-spectrum antibiotic therapy.
Hepatic
In psoriasis, liver function tests, including serum albumin, should be performed periodically prior to dosing but are often normal in the face of developing fibrosis or cirrhosis. These lesions may be detectable only by biopsy. The usual recommendation is to obtain a liver biopsy at 1) pretherapy or shortly after initiation of therapy (2 - 4 months), 2) a total cumulative dose of 1.5 grams, and 3) after each additional 1.0 to 1.5 grams. Moderate fibrosis or any cirrhosis normally leads to discontinuation of the drug; mild fibrosis normally suggests a repeat biopsy in 6 months. Milder histologic findings such as fatty change and low grade portal inflammation are relatively common pretherapy. Although these mild changes are usually not a reason to avoid or discontinue methotrexate therapy, the drug should be used with caution.
In rheumatoid arthritis, age at first use of methotrexate and duration of therapy have been reported as risk factors for hepatotoxicity; other risk factors, similar to those observed in psoriasis, may be present in rheumatoid arthritis but have not been confirmed to date. Persistent abnormalities in liver function tests may precede appearance of fibrosis or cirrhosis in this population. There is a combined reported experience in 217 rheumatoid arthritis patients with liver biopsies both before and during treatment (after a cumulative dose of at least 1.5 g) and in 714 patients with a biopsy only during treatment. There are 64 (7%) cases of fibrosis and 1 (0.1%) case of cirrhosis. Of the 64 cases of fibrosis, 60 were deemed mild. The reticulin stain is more sensitive for early fibrosis and its use may increase these figures. It is unknown whether even longer use will increase these risks.
Liver function tests should be performed at baseline and at 4-8 week intervals in patients receiving methotrexate for rheumatoid arthritis. Pretreatment liver biopsy should be performed for patients with a history of excessive alcohol consumption, persistently abnormal baseline liver function test values or chronic hepatitis B or C infection. During therapy, liver biopsy should be performed if there are persistent liver function test abnormalities or there is a decrease in serum albumin below the normal range (in the setting of well controlled rheumatoid arthritis).
If the results of a liver biopsy show mild changes (Roenigk grades I, II, IIIa), methotrexate may be continued and the patient monitored as per recommendations listed above. Methotrexate should be discontinued in any patient who displays persistently abnormal liver function tests and refuses liver biopsy or in any patient whose liver biopsy shows moderate to severe changes (Roenigk grade IIIb or IV).
Infection or Immunologic States
Hypogammaglobulinemia has been reported rarely.
Potentially fatal opportunistic infections, especially pneumonia, may occur with methotrexate therapy. When a patient presents with pulmonary symptoms, the possibility of pneumonia should be considered.
Pulmonary
Renal
Skin
Other Precautions
Methotrexate exits slowly from third space compartments (eg, pleural effusions or ascites). This results in a prolonged terminal plasma half-life and unexpected toxicity. In patients with significant third space accumulations, it is advisable to evacuate the fluid before treatment and to monitor plasma methotrexate levels.
Lesions of psoriasis may be aggravated by concomitant exposure to ultraviolet radiation. Radiation dermatitis and sunburn may be “recalled” by the use of methotrexate.
What are the side effects of Rheumatrex?
IN GENERAL, THE INCIDENCE AND SEVERITY OF ACUTE SIDE EFFECTS ARE RELATED TO DOSE AND FREQUENCY OF ADMINISTRATION. THE MOST SERIOUS REACTIONS ARE DISCUSSED ABOVE UNDER ORGAN SYSTEM TOXICITY IN THE PRECAUTION SECTION. THAT SECTION SHOULD ALSO BE CONSULTED WHEN LOOKING FOR INFORMATION ABOUT ADVERSE REACTIONS WITH METHOTREXATE.
The most frequently reported adverse reactions include ulcerative stomatitis, leukopenia, nausea, and abdominal distress. Other frequently reported adverse effects are malaise, undue fatigue, chills and fever, dizziness and decreased resistance to infection.
Other adverse reactions that have been reported with methotrexate are listed below by organ system. In the oncology setting, concomitant treatment and the underlying disease make specific attribution of a reaction to methotrexate difficult.
Alimentary System
Blood and Lymphatic System Disorders
Cardiovascular
Central Nervous System
Hepatobiliary
Infection
Musculoskeletal System
Ophthalmic
Pulmonary System
Skin
Urogenital System
Other rarer reactions related to or attributed to the use of methotrexate such as nodulosis, vasculitis, arthralgia/myalgia, loss of libido/impotence, diabetes, osteoporosis, sudden death, reversible lymphomas, tumor lysis syndrome, soft tissue necrosis and osteonecrosis. Anaphylactoid reactions have been reported.
Adverse Reactions in Double-Blind Rheumatoid Arthritis Studies
The approximate incidences of methotrexate attributed (ie, placebo rate subtracted) adverse reactions in 12 to 18 week double-blind studies of patients (n=128) with rheumatoid arthritis treated with low-dose oral (7.5 to 15 mg/week) pulse methotrexate, are listed below. Virtually all of these patients were on concomitant nonsteroidal anti-inflammatory drugs and some were also taking low dosages of corticosteroids. Hepatic histology was not examined in these short-term studies. (See .)
Incidence greater than 10%: Elevated liver function tests 15%, nausea/vomiting 10%.
Incidence 3% to 10%: Stomatitis, thrombocytopenia, (platelet count less than 100,000/mm).
Incidence 1% to 3%: Rash/pruritus/dermatitis, diarrhea, alopecia, leukopenia (WBC less than 3000/mm), pancytopenia, dizziness.
Two other controlled trials of patients (n=680) with Rheumatoid Arthritis on 7.5 mg – 15 mg/wk oral doses showed an incidence of interstitial pneumonitis of 1%. (See .)
Other less common reactions included decreased hematocrit, headache, upper respiratory infection, anorexia, arthralgias, chest pain, coughing, dysuria, eye discomfort, epistaxis, fever, infection, sweating, tinnitus, and vaginal discharge.
Adverse Reactions in Psoriasis
There are no recent placebo-controlled trials in patients with psoriasis. There are two literature reports (Roenigk, 1969 and Nyfors, 1978) describing large series (n=204, 248) of psoriasis patients treated with methotrexate. Dosages ranged up to 25 mg per week and treatment was administered for up to four years. With the exception of alopecia, photosensitivity, and “burning of skin lesions” (each 3% to 10%), the adverse reaction rates in these reports were very similar to those in the rheumatoid arthritis studies. Rarely, painful plaque erosions may appear.
Adverse Reactions in JRA Studies
The approximate incidences of adverse reactions reported in pediatric patients with JRA treated with oral, weekly doses of methotrexate (5 to 20 mg/m/wk or 0.1 to 0.65 mg/kg/wk) were as follows (virtually all patients were receiving concomitant nonsteroidal anti-inflammatory drugs, and some also were taking low doses of cortico-steroids): elevated liver function tests, 14%; gastrointestinal reactions (eg, nausea, vomiting, diarrhea), 11%; stomatitis, 2%; leukopenia, 2%; headache, 1.2%; alopecia, 0.5%; dizziness, 0.2%; and rash, 0.2%. Although there is experience with dosing up to 30 mg/m/wk in JRA, the published data for doses above 20 mg/m/wk are too limited to provide reliable estimates of adverse reaction rates.
What should I look out for while using Rheumatrex?
Methotrexate can cause fetal death or teratogenic effects when administered to a pregnant woman. Methotrexate is contraindicated in pregnant women with psoriasis or rheumatoid arthritis and should be used in the treatment of neoplastic diseases only when the potential benefit outweighs the risk to the fetus. Women of childbearing potential should not be started on methotrexate until pregnancy is excluded and should be fully counseled on the serious risk to the fetus (See ) should they become pregnant while undergoing treatment. Pregnancy should be avoided if either partner is receiving methotrexate; during and for a minimum of three months after therapy for male patients, and during and for at least one ovulatory cycle after therapy for female patients. (See
.)
Because of the potential for serious adverse reactions from methotrexate in breast fed infants, it is contraindicated in nursing mothers.
Patients with psoriasis or rheumatoid arthritis with alcoholism, alcoholic liver disease or other chronic liver disease should not receive methotrexate.
Patients with psoriasis or rheumatoid arthritis who have overt or laboratory evidence of immunodeficiency syndromes should not receive methotrexate.
Patients with psoriasis or rheumatoid arthritis who have preexisting blood dyscrasias, such as bone marrow hypoplasia, leukopenia, thrombocytopenia or significant anemia, should not receive methotrexate.
Patients with a known hypersensitivity to methotrexate should not receive the drug.
SEE .
Methotrexate formulations and diluents containing preservatives must not be used for intrathecal or high dose methotrexate therapy.
What might happen if I take too much Rheumatrex?
Leucovorin is indicated to diminish the toxicity and counteract the effect of inadvertently administered overdosages of methotrexate. Leucovorin administration should begin as promptly as possible. As the time interval between methotrexate administration and leucovorin initiation increases, the effectiveness of leucovorin in counteracting toxicity decreases. Monitoring of the serum methotrexate concentration is essential in determining the optimal dose and duration of treatment with leucovorin.
In cases of massive overdosage, hydration and urinary alkalinization may be necessary to prevent the precipitation of methotrexate and/or its metabolites in the renal tubules. Generally speaking, neither hemodialysis nor peritoneal dialysis have been shown to improve methotrexate elimination. However, effective clearance of methotrexate has been reported with acute, intermittent hemodialysis using a high-flux dialyzer (Wall, SM et al:
28(6): 846-854, 1996).
In postmarketing experience, overdose with methotrexate has generally occurred with oral and intrathecal administration, although intravenous and intramuscular overdose have also been reported.
Reports of oral overdose often indicate accidental daily administration instead of weekly (single or divided doses). Symptoms commonly reported following oral overdose include those symptoms and signs reported at pharmacologic doses, particularly hematologic and gastrointestinal reaction. For example, leukopenia, thrombocytopenia, anemia, pancytopenia, bone marrow suppression, mucositis, stomatitis, oral ulceration, nausea, vomiting, gastrointestinal ulceration, gastrointestinal bleeding. In some cases, no symptoms were reported. There have been reports of death following overdose. In these cases, events such as sepsis or septic shock, renal failure, and aplastic anemia were also reported.
How should I store and handle Rheumatrex?
Oral:DescriptionMethotrexate Tablets, USP contain an amount of methotrexate sodium equivalent to 2.5 mg of methotrexate and are round, convex, yellow tablets, scored in half on one side, engraved with M above the score, and 1 below.RHEUMATREX Methotrexate Tablets, USP, 2.5 mg Dose Packs - (each tablet equivalent to 2.5 mg of methotrexate)Oral:DescriptionMethotrexate Tablets, USP contain an amount of methotrexate sodium equivalent to 2.5 mg of methotrexate and are round, convex, yellow tablets, scored in half on one side, engraved with M above the score, and 1 below.RHEUMATREX Methotrexate Tablets, USP, 2.5 mg Dose Packs - (each tablet equivalent to 2.5 mg of methotrexate)Oral:DescriptionMethotrexate Tablets, USP contain an amount of methotrexate sodium equivalent to 2.5 mg of methotrexate and are round, convex, yellow tablets, scored in half on one side, engraved with M above the score, and 1 below.RHEUMATREX Methotrexate Tablets, USP, 2.5 mg Dose Packs - (each tablet equivalent to 2.5 mg of methotrexate)Oral:DescriptionMethotrexate Tablets, USP contain an amount of methotrexate sodium equivalent to 2.5 mg of methotrexate and are round, convex, yellow tablets, scored in half on one side, engraved with M above the score, and 1 below.RHEUMATREX Methotrexate Tablets, USP, 2.5 mg Dose Packs - (each tablet equivalent to 2.5 mg of methotrexate)
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
Methotrexate inhibits dihydrofolic acid reductase. Dihydrofolates must be reduced to tetrahydrofolates by this enzyme before they can be utilized as carriers of one-carbon groups in the synthesis of purine nucleotides and thymidylate. Therefore, methotrexate interferes with DNA synthesis, repair, and cellular replication. Actively proliferating tissues such as malignant cells, bone marrow, fetal cells, buccal and intestinal mucosa, and cells of the urinary bladder are in general more sensitive to this effect of methotrexate. When cellular proliferation in malignant tissues is greater than in most normal tissues, methotrexate may impair malignant growth without irreversible damage to normal tissues.
The mechanism of action in rheumatoid arthritis is unknown; it may affect immune function. Two reports describe methotrexate inhibition of DNA precursor uptake by stimulated mononuclear cells, and another describes in animal polyarthritis partial correction by methotrexate of spleen cell hyporesponsiveness and suppressed IL 2 production. Other laboratories, however, have been unable to demonstrate similar effects. Clarification of methotrexate’s effect on immune activity and its relation to rheumatoid immunopathogenesis await further studies.
In patients with rheumatoid arthritis, effects of methotrexate on articular swelling and tenderness can be seen as early as 3 to 6 weeks. Although methotrexate clearly ameliorates symptoms of inflammation (pain, swelling, stiffness), there is no evidence that it induces remission of rheumatoid arthritis nor has a beneficial effect been demonstrated on bone erosions and other radiologic changes which result in impaired joint use, functional disability, and deformity.
Most studies of methotrexate in patients with rheumatoid arthritis are relatively short term (3 to 6 months). Limited data from long-term studies indicate that an initial clinical improvement is maintained for at least two years with continued therapy.
In psoriasis, the rate of production of epithelial cells in the skin is greatly increased over normal skin. This differential in proliferation rates is the basis for the use of methotrexate to control the psoriatic process.
In a 6-month, double-blind, placebo-controlled trial of 127 pediatric patients with juvenile rheumatoid arthritis (JRA) (mean age, 10.1 years; age range 2.5 to 18 years, mean duration of disease, 5.1 years) on background non-steroidal anti-inflammatory drugs (NSAIDs) and/or prednisone, methotrexate given weekly at an oral dose of 10 mg/m provided significant clinical improvement compared to placebo as measured by either the physician’s global assessment, or by a patient composite (25% reduction in the articular-severity score plus improvement in parent and physician global assessments of disease activity.) Over two-thirds of the patients in this trial had polyarticular-course JRA, and the numerically greatest response was seen in this subgroup treated with 10 mg/m/wk methotrexate. The overwhelming majority of the remaining patients had systemic-course JRA. All patients were unresponsive to NSAIDs; approximately one-third were using low dose corticosteroids. Weekly methotrexate at a dose of 5 mg/m was not significantly more effective than placebo in this trial.
Non-Clinical Toxicology
Methotrexate can cause fetal death or teratogenic effects when administered to a pregnant woman. Methotrexate is contraindicated in pregnant women with psoriasis or rheumatoid arthritis and should be used in the treatment of neoplastic diseases only when the potential benefit outweighs the risk to the fetus. Women of childbearing potential should not be started on methotrexate until pregnancy is excluded and should be fully counseled on the serious risk to the fetus (See ) should they become pregnant while undergoing treatment. Pregnancy should be avoided if either partner is receiving methotrexate; during and for a minimum of three months after therapy for male patients, and during and for at least one ovulatory cycle after therapy for female patients. (See .)Because of the potential for serious adverse reactions from methotrexate in breast fed infants, it is contraindicated in nursing mothers.
Patients with psoriasis or rheumatoid arthritis with alcoholism, alcoholic liver disease or other chronic liver disease should not receive methotrexate.
Patients with psoriasis or rheumatoid arthritis who have overt or laboratory evidence of immunodeficiency syndromes should not receive methotrexate.
Patients with psoriasis or rheumatoid arthritis who have preexisting blood dyscrasias, such as bone marrow hypoplasia, leukopenia, thrombocytopenia or significant anemia, should not receive methotrexate.
Patients with a known hypersensitivity to methotrexate should not receive the drug.
SEE .
Methotrexate formulations and diluents containing preservatives must not be used for intrathecal or high dose methotrexate therapy.
Concomitant administration of some NSAIDs with high dose methotrexate therapy has been reported to elevate and prolong serum methotrexate levels, resulting in deaths from severe hematologic and gastrointestinal toxicity.
Caution should be used when NSAIDs and salicylates are administered concomitantly with lower doses of methotrexate. These drugs have been reported to reduce the tubular secretion of methotrexate in an animal model and may enhance its toxicity.
Despite the potential interactions, studies of methotrexate in patients with rheumatoid arthritis have usually included concurrent use of constant dosage regimens of NSAIDs, without apparent problems. It should be appreciated, however, that the doses used in rheumatoid arthritis (7.5 to 20 mg/wk) are somewhat lower than those used in psoriasis and that larger doses could lead to unexpected toxicity.
Methotrexate is partially bound to serum albumin, and toxicity may be increased because of displacement by certain drugs, such as salicylates, phenylbutazone, phenytoin, and sulfonamides. Renal tubular transport is also diminished by probenecid; use of methotrexate with this drug should be carefully monitored.
Oral antibiotics such as tetracycline, chloramphenicol, and nonabsorbable broad spectrum antibiotics, may decrease intestinal absorption of methotrexate or interfere with the enterohepatic circulation by inhibiting bowel flora and suppressing metabolism of the drug by bacteria.
Penicillins may reduce the renal clearance of methotrexate; increased serum concentrations of methotrexate with concomitant hematologic and gastrointestinal toxicity have been observed with methotrexate. Use of methotrexate with penicillins should be carefully monitored.
The potential for increased hepatotoxicity when methotrexate is administered with other hepatotoxic agents has not been evaluated. However, hepatotoxicity has been reported in such cases. Therefore, patients receiving concomitant therapy with methotrexate and other potential hepatotoxins (eg, azathioprine, retinoids, sulfa-salazine) should be closely monitored for possible increased risk of hepatotoxicity.
Methotrexate may decrease the clearance of theophylline; theophylline levels should be monitored when used concurrently with methotrexate.
Certain side effects such as mouth sores may be reduced by folate supplementation with methotrexate.
Trimethoprim/sulfa-methoxazole has been reported rarely to increase bone marrow suppression in patients receiving methotrexate, probably by an additive antifolate effect.
Methotrexate has the potential for serious toxicity. (See .) Toxic effects may be related in frequency and severity to dose or frequency of administration but have been seen at all doses. Because they can occur at any time during therapy, it is necessary to follow patients on methotrexate closely. Most adverse reactions are reversible if detected early. When such reactions do occur, the drug should be reduced in dosage or discontinued and appropriate corrective measures should be taken. If necessary, this could include the use of leucovorin calcium and/or acute, intermittent hemodialysis with a high-flux dialyzer. (See .) If methotrexate therapy is reinstituted, it should be carried out with caution, with adequate consideration of further need for the drug and with increased alertness as to possible recurrence of toxicity.
The clinical pharmacology of methotrexate has not been well studied in older individuals. Due to diminished hepatic and renal function as well as decreased folate stores in this population, relatively low doses should be considered, and these patients should be closely monitored for early signs of toxicity.
IN GENERAL, THE INCIDENCE AND SEVERITY OF ACUTE SIDE EFFECTS ARE RELATED TO DOSE AND FREQUENCY OF ADMINISTRATION. THE MOST SERIOUS REACTIONS ARE DISCUSSED ABOVE UNDER ORGAN SYSTEM TOXICITY IN THE PRECAUTION SECTION. THAT SECTION SHOULD ALSO BE CONSULTED WHEN LOOKING FOR INFORMATION ABOUT ADVERSE REACTIONS WITH METHOTREXATE.
The most frequently reported adverse reactions include ulcerative stomatitis, leukopenia, nausea, and abdominal distress. Other frequently reported adverse effects are malaise, undue fatigue, chills and fever, dizziness and decreased resistance to infection.
Other adverse reactions that have been reported with methotrexate are listed below by organ system. In the oncology setting, concomitant treatment and the underlying disease make specific attribution of a reaction to methotrexate difficult.
Alimentary System
Blood and Lymphatic System Disorders
Cardiovascular
Central Nervous System
Hepatobiliary
Infection
Musculoskeletal System
Ophthalmic
Pulmonary System
Skin
Urogenital System
Other rarer reactions related to or attributed to the use of methotrexate such as nodulosis, vasculitis, arthralgia/myalgia, loss of libido/impotence, diabetes, osteoporosis, sudden death, reversible lymphomas, tumor lysis syndrome, soft tissue necrosis and osteonecrosis. Anaphylactoid reactions have been reported.
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).