Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Sodium Thiosulfate

&times

Overview

What is Sodium Thiosulfate?

Sodium thiosulfate has the chemical name thiosulfuric acid, disodium salt, pentahydrate. The chemical formula is NaSO∙ 5HO and the molecular weight is 248.17. The structural formula is:

Structure of Sodium Thiosulfate Pentahydrate

Sodium Thiosulfate Injection is a cyanide antidote which contains one 50 mL glass vial containing a 25% solution of sodium thiosulfate injection.

Sodium thiosulfate injection is a sterile aqueous solution and is intended for intravenous injection. Each vial contains 12.5 grams of sodium thiosulfate in 50 mL solution (250 mg/mL). Each mL also contains 2.8 mg boric acid and 4.4 mg of potassium chloride. The pH of the solution is adjusted with boric acid and/or sodium hydroxide. Sodium thiosulfate injection is a clear solution with a pH between 7.5 and 9.0.



What does Sodium Thiosulfate look like?



What are the available doses of Sodium Thiosulfate?

Sodium Thiosulfate Injection consists of:

What should I talk to my health care provider before I take Sodium Thiosulfate?

How should I use Sodium Thiosulfate?

Sodium Thiosulfate Injection is indicated for sequential use with sodium nitrite for the treatment of acute cyanide poisoning that is judged to be serious or life-threatening. When the diagnosis of cyanide poisoning is uncertain, the potential risks associated with Sodium Thiosulfate Injection should be carefully weighed against the potential benefits, especially if the patient is not in extremis.

If clinical suspicion of cyanide poisoning is high, administer Sodium Thiosulfate Injection without delay and in conjunction with appropriate airway, ventilatory, and circulatory support. ()

The expert advice of a regional poison control center may be obtained by calling 1-800-222-1222. ()


What interacts with Sodium Thiosulfate?

Sorry No Records found


What are the warnings of Sodium Thiosulfate?

Sorry No Records found


What are the precautions of Sodium Thiosulfate?

Sorry No Records found


What are the side effects of Sodium Thiosulfate?

Sorry No records found


What should I look out for while using Sodium Thiosulfate?

None


What might happen if I take too much Sodium Thiosulfate?

There is limited information about the effects of large doses of sodium thiosulfate in humans. Oral administration of 3 g sodium thiosulfate per day for 1-2 weeks in humans resulted in reductions in room air arterial oxygen saturation to as low as 75%, which was due to a rightward shift in the oxygen hemoglobin dissociation curve. The subjects returned to baseline oxygen saturations 1 week after discontinuation of sodium thiosulfate. A single intravenous administration of 20 mL of 10% sodium thiosulfate reportedly did not change oxygen saturations.


How should I store and handle Sodium Thiosulfate?

Store at 20 to 25°C (68 to 77°F). [see USP Controlled Room Temperature.]For Single-use only.Discard unused portion.Store at 20 to 25°C (68 to 77°F). [see USP Controlled Room Temperature.]For Single-use only.Discard unused portion.Store at 20 to 25°C (68 to 77°F). [see USP Controlled Room Temperature.]For Single-use only.Discard unused portion.Each Sodium Thiosulfate carton (NDC 60267-705-50) consists of the following:


&times

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

Exposure to a high dose of cyanide can result in death within minutes due to the inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, cyanide binds rapidly with cytochrome a3, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a3 prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. In massive acute cyanide poisoning, the mechanism of toxicity may involve other enzyme systems as well.

The synergy resulting from treatment of cyanide poisoning with the combination of sodium nitrite and sodium thiosulfate is the result of differences in their primary mechanisms of action as antidotes for cyanide poisoning.

Non-Clinical Toxicology
None

As with all drugs, the potential exists for interaction with other drugs by a variety of mechanisms.

CNS-Active Drugs

Ethanol: Zaleplon 10 mg potentiated the CNS-impairing effects of ethanol 0.75 g/kg on balance testing and reaction time for 1 hour after ethanol administration and on the digit symbol substitution test (DSST), symbol copying test, and the variability component of the divided attention test for 2.5 hours after ethanol administration. The potentiation resulted from a CNS pharmacodynamic interaction; zaleplon did not affect the pharmacokinetics of ethanol.

Imipramine: Coadministration of single doses of zaleplon 20 mg and imipramine 75 mg produced additive effects on decreased alertness and impaired psychomotor performance for 2 to 4 hours after administration. The interaction was pharmacodynamic with no alteration of the pharmacokinetics of either drug.

Paroxetine: Coadministration of a single dose of zaleplon 20 mg and paroxetine 20 mg daily for 7 days did not produce any interaction on psychomotor performance. Additionally, paroxetine did not alter the pharmacokinetics of zaleplon, reflecting the absence of a role of CYP2D6 in zaleplon 's metabolism.

Thioridazine: Coadministration of single doses of zaleplon 20 mg and thioridazine 50 mg produced additive effects on decreased alertness and impaired psychomotor performance for 2 to 4 hours after administration. The interaction was pharmacodynamic with no alteration of the pharmacokinetics of either drug.

Venlafaxine: Coadministration of a single dose of zaleplon 10 mg and multiple doses of venlafaxine ER (extended release) 150 mg did not result in any significant changes in the pharmacokinetics of either zaleplon or venlafaxine. In addition, there was no pharmacodynamic interaction as a result of coadministration of zaleplon and venlafaxine ER.

Promethazine: Coadministration of a single dose of zaleplon and promethazine (10 and 25 mg, respectively) resulted in a 15% decrease in maximal plasma concentrations of zaleplon, but no change in the area under the plasma concentration-time curve. However, the pharmacodynamics of coadministration of zaleplon and promethazine have not been evaluated. Caution should be exercised when these 2 agents are coadministered.

Drugs That Induce CYP3A4

Rifampin: CYP3A4 is ordinarily a minor metabolizing enzyme of zaleplon. Multiple-dose administration of the potent CYP3A4 inducer rifampin (600 mg every 24 hours, q24h, for 14 days), however, reduced zaleplon C and AUC by approximately 80%. The coadministration of a potent CYP3A4 enzyme inducer, although not posing a safety concern, thus could lead to ineffectiveness of zaleplon. An alternative non-CYP3A4 substrate hypnotic agent may be considered in patients taking CYP3A4 inducers such as rifampin, phenytoin, carbamazepine, and phenobarbital.

Drugs That Inhibit CYP3A4

CYP3A4 is a minor metabolic pathway for the elimination of zaleplon because the sum of desethylzaleplon (formed via CYP3A4 in vitro) and its metabolites, 5-oxo-desethylzaleplon and 5-oxo-desethylzaleplon glucuronide, account for only 9% of the urinary recovery of a zaleplon dose. Coadministration of single, oral doses of zaleplon with erythromycin (10 mg and 800 mg respectively), a strong, selective CYP3A4 inhibitor, produced a 34% increase in zaleplon's maximal plasma concentrations and a 20% increase in the area under the plasma concentration-time curve. The magnitude of interaction with multiple doses of erythromycin is unknown. Other strong selective CYP3A4 inhibitors such as ketoconazole can also be expected to increase the exposure of zaleplon. A routine dosage adjustment of zaleplon is not considered necessary.

Drugs That Inhibit Aldehyde Oxidase

The aldehyde oxidase enzyme system is less well studied than the cytochrome P450 enzyme system.

Diphenhydramine: Diphenhydramine is reported to be a weak inhibitor of aldehyde oxidase in rat liver, but its inhibitory effects in human liver are not known. There is no pharmacokinetic interaction between zaleplon and diphenhydramine following the administration of a single dose (10 mg and 50 mg, respectively) of each drug. However, because both of these compounds have CNS effects, an additive pharmacodynamic effect is possible.

Drugs That Inhibit Both Aldehyde Oxidase and CYP3A4

Cimetidine: Cimetidine inhibits both aldehyde oxidase (in vitro) and CYP3A4 (in vitro and in vivo), the primary and secondary enzymes, respectively, responsible for zaleplon metabolism. Concomitant administration of zaleplon (10 mg) and cimetidine (800 mg) produced an 85% increase in the mean C and AUC of zaleplon. An initial dose of 5 mg should be given to patients who are concomitantly being treated with cimetidine (see ).

Drugs Highly Bound to Plasma Protein

Zaleplon is not highly bound to plasma proteins (fraction bound 60% 15%); therefore, the disposition of zaleplon is not expected to be sensitive to alterations in protein binding. In addition, administration of zaleplon to a patient taking another drug that is highly protein bound should not cause transient increase in free concentrations of the other drug.

Drugs with a Narrow Therapeutic Index

Digoxin: Zaleplon (10 mg) did not affect the pharmacokinetic or pharmacodynamic profile of digoxin (0.375 mg q24h for 8 days).

Warfarin: Multiple oral doses of zaleplon (20 mg q24h for 13 days) did not affect the pharmacokinetics of warfarin (R+)- or (S-)-enantiomers or the pharmacodynamics (prothrombin time) following a single 25-mg oral dose of warfarin.

Drugs That Alter Renal Excretion

Ibuprofen: Ibuprofen is known to affect renal function and, consequently, alter the renal excretion of other drugs. There was no apparent pharmacokinetic interaction between zaleplon and ibuprofen following single dose administration (10 mg and 600 mg, respectively) of each drug. This was expected because zaleplon is primarily metabolized and renal excretion of unchanged zaleplon accounts for less than 1% of the administered dose.

There have been no controlled clinical trials conducted to systematically assess the adverse events profile of sodium thiosulfate.

The medical literature has reported the following adverse events in association with sodium thiosulfate administration. These adverse events were not reported in the context of controlled trials or with consistent monitoring and reporting methodologies for adverse events. Therefore, frequency of occurrence of these adverse events cannot be assessed.

Cardiovascular system:

Central nervous system:

Gastrointestinal system:

Hematological

Body as a Whole:

In humans, rapid administration of concentrated solutions or solutions not freshly prepared, and administration of large doses of sodium thiosulfate have been associated with a higher incidence of nausea and vomiting. However, administration of 0.1 g sodium thiosulfate per pound up to a maximum of 15 g in a 10-15% solution over 10-15 minutes was associated with nausea and vomiting in 7 of 26 patients without concomitant cyanide intoxication.

In a series of 11 human subjects, a single intravenous infusion of 50 mL of 50% sodium thiosulfate was associated with increases in clotting time 1-3 days after administration. However, no significant changes were observed in other hematological parameters.

&times

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

&times

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
&times

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
&times

Tips

Tips

&times

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).