Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Suprane

×

Overview

What is Suprane?

SUPRANE (desflurane, USP), a nonflammable liquid administered via vaporizer, is a general inhalation anesthetic. It is (±)1,2,2,2-tetrafluoroethyl difluoromethyl ether:

SUPRANE (desflurane, USP) is nonflammable as defined by the requirements of International Electrotechnical Commission 601-2-13.

SUPRANE (desflurane, USP) is a colorless, volatile liquid below 22.8°C. Data indicate that SUPRANE (desflurane, USP) is stable when stored under normal room lighting conditions according to instructions.

SUPRANE (desflurane, USP) is chemically stable. The only known degradation reaction is through prolonged direct contact with soda lime producing low levels of fluoroform (CHF). The amount of CHF obtained is similar to that produced with MAC-equivalent doses of isoflurane. No discernible degradation occurs in the presence of strong acids.

SUPRANE (desflurane, USP) does not corrode stainless steel, brass, aluminum, anodized aluminum , nickel plated brass, copper, or beryllium.



What does Suprane look like?



What are the available doses of Suprane?

Colorless, non-flammable, volatile liquid (below 22.8°C) for inhalation, 100% desflurane.

What should I talk to my health care provider before I take Suprane?

See 17 for PATIENT COUNSELING INFORMATION.

How should I use Suprane?

SUPRANE (desflurane, USP) is indicated as an inhalation agent for induction of anesthesia for inpatient and outpatient surgery in adults.

SUPRANE is contraindicated as an inhalation agent for the induction of anesthesia in pediatric patients because of a high incidence of moderate to severe uppoer airway adverse events.

Only persons trained in the administration of general anesthesia should administer SUPRANE. Only a vaporizer specifically designed and designated for use with desflurane should be utilized for its administration. Facilities for maintenance of a patent airway, artificial ventilation, oxygen enrichment, and circulatory resuscitation must be immediately available.

SUPRANE is administered by inhalation. The administration of general anesthesia must be individualized based on the patient's response. Hypotension and respiratory depression increase as anesthesia with SUPRANE is deepened. The minimum alveolar concentration (MAC) of SUPRANE decreases with increasing patient age. The MAC for SUPRANE is also reduced by concomitant NO administration The dose should be adjusted accordingly. The following table provides mean relative potency based upon age and effect of NO in predominately ASA physical status I or II patients.

Benzodiazepines and opioids decrease the MAC of SUPRANE SUPRANE (desflurane, USP) also decreases the doses of neuromuscular blocking agents required The dose should be adjusted accordingly.


What interacts with Suprane?

Sorry No Records found


What are the warnings of Suprane?

Sorry No Records found


What are the precautions of Suprane?

Sorry No Records found


What are the side effects of Suprane?

Sorry No records found


What should I look out for while using Suprane?

The use of SUPRANE is contraindicated in the following conditions:


What might happen if I take too much Suprane?

The symptoms of overdosage of SUPRANE can present as a deepening of anesthesia, cardiac and/or respiratory depression in spontaneously breathing patients, and cardiac depression in ventilated patients in whom hypercapnia and hypoxia may occur only at a late stage. In the event of overdosage, or suspected overdosage, take the following actions:  discontinue administration of SUPRANE, maintain a patent airway, initiate assisted or controlled ventilation with oxygen, and maintain adequate cardiovascular function.


How should I store and handle Suprane?

Sorry No Records found


×

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

Changes in the clinical effects of SUPRANE rapidly follow changes in the inspired concentration. The duration of anesthesia and selected recovery measures for SUPRANE are given in the following tables:

In 178 female outpatients undergoing laparoscopy, premedicated with fentanyl (1.5-2.0 ug/kg), anesthesia was initiated with propofol 2.5 mg/kg, desflurane/NO 60% in O or desflurane/O alone. Anesthesia was maintained with either propofol 1.5-9.0 mg/kg/hr, desflurane 2.6-8.4% in NO 60% in O, or desflurane 3.1-8.9% in O.

In 88 unpremedicated outpatients, anesthesia was initiated with thiopental 3-9 mg/kg or desflurane in O. Anesthesia was maintained with isoflurane 0.7-1.4% in NO 60%, desflurane 1.8-7.7% in NO 60%, or desflurane 4.4-11.9% in O.

Recovery from anesthesia was assessed at 30, 60, and 90 minutes following 0.5 MAC desflurane (3%) or isoflurane (0.6%) in NO 60% using subjective and objective tests. At 30 minutes after anesthesia, only 43% of the isoflurane group were able to perform the psychometric tests compared to 76% in the SUPRANE group (p < 0.05).

SUPRANE was studied in twelve volunteers receiving no other drugs. Hemodynamic effects during controlled ventilation (PaCO 38 mm Hg) were:

When the same volunteers breathed spontaneously during desflurane anesthesia, systemic vascular resistance and mean arterial blood pressure decreased; cardiac index, heart rate, stroke volume, and central venous pressure (CVP) increased compared to values when the volunteers were conscious. Cardiac index, stroke volume, and CVP were greater during spontaneous ventilation than during controlled ventilation.

During spontaneous ventilation in the same volunteers, increasing the concentration of SUPRANE from 3% to 12% decreased tidal volume and increased arterial carbon dioxide tension and respiratory rate. The combination of NO 60% with a given concentration of desflurane gave results similar to those with desflurane alone. Respiratory depression produced by desflurane is similar to that produced by other potent inhalation agents.

The use of desflurane concentrations higher than 1.5 MAC may produce apnea.

Non-Clinical Toxicology
The use of SUPRANE is contraindicated in the following conditions:









CNS Drugs - Given the primary CNS effects of citalopram, caution should be used when it is taken in combination with other centrally acting drugs.

Alcohol - Although citalopram did not potentiate the cognitive and motor effects of alcohol in a clinical trial, as with other psychotropic medications, the use of alcohol by depressed patients taking citalopram is not recommended.

Monoamine Oxidase Inhibitors (MAOIs) - See CONTRAINDICATIONS, WARNINGS and DOSAGE AND ADMINISTRATION.

Drugs That Interfere With Hemostasis (NSAIDs, Aspirin, Warfarin, etc.)- Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate the risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when citalopram is initiated or discontinued.

Cimetidine - In subjects who had received 21 days of 40 mg/day citalopram, combined administration of 400 mg/day cimetidine for 8 days resulted in an increase in citalopram AUC and C of 43% and 39%, respectively.

Citalopram 20 mg/day is the maximum recommended dose for patients taking concomitant cimetidine because of the risk of QT prolongation (see  and )

Digoxin - In subjects who had received 21 days of 40 mg/day citalopram, combined administration of citalopram and digoxin (single dose of 1 mg) did not significantly affect the pharmacokinetics of either citalopram or digoxin.

Lithium - Coadministration of citalopram (40 mg/day for 10 days) and lithium (30 mmol/day for 5 days) had no significant effect on the pharmacokinetics of citalopram or lithium. Nevertheless, plasma lithium levels should be monitored with appropriate adjustment to the lithium dose in accordance with standard clinical practice. Because lithium may enhance the serotonergic effects of citalopram, caution should be exercised when citalopram and lithium are coadministered.

Pimozide - In a controlled study, a single dose of pimozide 2 mg co-administered with citalopram 40 mg given once daily for 11 days was associated with a mean increase in QTc values of approximately 10 msec compared to pimozide given alone. Citalopram did not alter the mean AUC or C of pimozide. The mechanism of this pharmacodynamic interaction is not known.

Theophylline - Combined administration of citalopram (40 mg/day for 21 days) and the CYP1A2 substrate theophylline (single dose of 300 mg) did not affect the pharmacokinetics of theophylline. The effect of theophylline on the pharmacokinetics of citalopram was not evaluated.

Sumatriptan - There have been rare postmarketing reports describing patients with weakness, hyperreflexia, and incoordination following the use of a SSRI and sumatriptan. If concomitant treatment with sumatriptan and an SSRI (e.g., fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram) is clinically warranted, appropriate observation of the patient is advised.

Warfarin - Administration of 40 mg/day citalopram for 21 days did not affect the pharmacokinetics of warfarin, a CYP3A4 substrate. Prothrombin time was increased by 5%, the clinical significance of which is unknown.

Carbamazepine - Combined administration of citalopram (40 mg/day for 14 days) and carbamazepine (titrated to 400 mg/day for 35 days) did not significantly affect the pharmacokinetics of carbamazepine, a CYP3A4 substrate. Although trough citalopram plasma levels were unaffected, given the enzyme-inducing properties of carbamazepine, the possibility that carbamazepine might increase the clearance of citalopram should be considered if the two drugs are coadministered.

Triazolam - Combined administration of citalopram (titrated to 40 mg/day for 28 days) and the CYP3A4 substrate triazolam (single dose of 0.25 mg) did not significantly affect the pharmacokinetics of either citalopram or triazolam.

Ketoconazole - Combined administration of citalopram (40 mg) and ketoconazole (200 mg) decreased the C and AUC of ketoconazole by 21% and 10%, respectively, and did not significantly affect the pharmacokinetics of citalopram.

CYP2C19 Inhibitors – Citalopram 20 mg/day is the maximum recommended dose for patients taking concomitant CYP2C19 inhibitors because of the risk of QT prolongation (see , and  ).

Metoprolol - Administration of 40 mg/day citalopram for 22 days resulted in a two-fold increase in the plasma levels of the betaadrenergic blocker metoprolol. Increased metoprolol plasma levels have been associated with decreased cardioselectivity. Coadministration of citalopram and metoprolol had no clinically significant effects on blood pressure or heart rate.

Imipramine and Other Tricyclic Antidepressants (TCAs) - studies suggest that citalopram is a relatively weak inhibitor of CYP2D6. Coadministration of citalopram (40 mg/day for 10 days) with the TCA imipramine (single dose of 100 mg), a substrate for CYP2D6, did not significantly affect the plasma concentrations of imipramine or citalopram. However, the concentration of the imipramine metabolite desipramine was increased by approximately 50%. The clinical significance of the desipramine change is unknown. Nevertheless, caution is indicated in the coadministration of TCAs with citalopram.

Electroconvulsive Therapy (ECT) - There are no clinical studies of the combined use of electroconvulsive therapy (ECT) and citalopram.

In susceptible individuals, potent inhalation anesthetic agents may trigger a skeletal muscle hypermetabolic state leading to high oxygen demand and the clinical syndrome known as malignant hyperthermia. In genetically susceptible pigs, desflurane induced malignant hyperthermia. The clinical syndrome is signaled by hypercapnia, and may include muscle rigidity, tachycardia, tachypnea, cyanosis, arrhythmias, and/or unstable blood pressure. Some of these nonspecific signs may also appear during light anesthesia:  acute hypoxia, hypercapnia, and hypovolemia.

Treatment of malignant hyperthermia includes discontinuation of triggering agents, administration of intravenous dantrolene sodium, and application of supportive therapy. (Consult prescribing information for dantrolene sodium intravenous for additional information on patient management.) Renal failure may appear later, and urine flow should be monitored and sustained if possible.

Fatal outcome of malignant hyperthermia has been reported with desflurane.

×

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

×

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
×

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
×

Tips

Tips

×

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).