Disclaimer:

Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.

Theophylline Anhydrous and Dextrose

×

Overview

What is Theophylline in Dextrose?

Theophylline in 5% Dextrose Injection USP is sterile, nonpyrogenic solution intended for intravenous administration, prepared from theophylline and dextrose in Water for Injection USP.

Theophylline is structurally classified as a methylxanthine. It occurs as a white, odorless, crystalline powder with a bitter taste. Anhydrous theophylline has the chemical name 1H-Purine-2, 6-dione, 3,7-dihydro-1, 3-dimethyl-, and is represented by the following structural formula:

The formulas of the active ingredients are:

The molecular formula of anhydrous theophylline is CHNO with a molecular weight of 180.17.

The molecular formula of hydrous dextrose is CHO•HO with a molecular weight of 198.17.

Not made with natural rubber latex, PVC or DEHP.

The plastic container is made from a multilayered film specifically developed for parenteral drugs. It contains no plasticizers and exhibits virtually no leachables. The solution contact layer is a rubberized copolymer of ethylene and propylene. The container is nontoxic and biologically inert. The container-solution unit is a closed system and is not dependent upon entry of external air during administration. The container is overwrapped to provide protection from the physical environment and to provide an additional moisture barrier when necessary.

The closure system has two ports; the one for the administration set has a tamper evident plastic protector. Refer to the Directions for Use of the container.



What does Theophylline in Dextrose look like?



What are the available doses of Theophylline in Dextrose?

Sorry No records found.

What should I talk to my health care provider before I take Theophylline in Dextrose?

Sorry No records found

How should I use Theophylline in Dextrose?

Theophylline in 5% Dextrose Injection USP is indicated as an adjunct to inhaled beta-2 selective agonists and systemically administered corticosteroids for the treatment of acute exacerbations of the symptoms and reversible airflow obstruction associated with asthma and other chronic lung diseases, emphysema and chronic bronchitis.

These solutions are for intravenous use only.


What interacts with Theophylline in Dextrose?

Theophylline in 5% Dextrose Injection USP is contraindicated in patients with a history of hypersensitivity to theophylline or other components in the product.


Solutions containing dextrose may be contraindicated in patients with known allergy to corn or corn products.



What are the warnings of Theophylline in Dextrose?

Concurrent Illness

Theophylline should be used with extreme caution in patients with the following clinical conditions due to the increased risk of exacerbation of the concurrent condition:

  Active peptic ulcer disease  Seizure disorders  Cardiac arrhythmias (not including bradyarrhythmias)

Conditions That Reduce Theophylline Clearance

There are several readily identifiable causes of reduced theophylline clearance. . Careful consideration must be given to the benefits and risks of theophylline use and the need for more intensive monitoring of serum theophylline concentrations in patients with the following risk factors:

      Neonates (term and premature)    Children less than 1 year    Elderly (greater than 60 years)

       Acute pulmonary edema    Congestive heart failure    Cor-pulmonale    Fever; greater than or equal to 102°F for 24 hours or more; or lesser temperature elevations for longer periods    Hypothyroidism    Liver disease; cirrhosis, acute hepatitis    Reduced renal function in infants less than 3 months of age    Sepsis with multi-organ failure    Shock

  

       Adding a drug that inhibits theophylline metabolism ( cimetidine, erythromycin, tacrine)    or stopping a concurrently administered drug that enhances theophylline metabolism (     carbamazepine, rifampin). (See .)

When Signs or Symptoms of Theophylline Toxicity are Present

Whenever a patient receiving theophylline develops nausea or vomiting, particularly repetitive vomiting, or other signs or symptoms consistent with theophylline toxicity (even if another cause may be suspected), the intravenous infusion should be stopped and a serum theophylline concentration measured immediately

Dosage Increases

Increases in the dose of intravenous theophylline should not be made in response to an acute exacerbation of symptoms unless the steady-state serum theophylline concentration is less than 10 mcg/mL.

As the rate of theophylline clearance may be dose-dependent ( steady-state serum concentrations may increase disproportionately to the increase in dose), an increase in dose based upon a sub-therapeutic serum concentration measurement should be conservative. In general, limiting infusion rate increases to about 25% of the previous infusion rate will reduce the risk of unintended excessive increases in serum theophylline concentration (see  ).

Solutions containing dextrose without electrolytes should not be administered simultaneously with blood through the same infusion set because of the possibility of agglomeration of erythrocytes.

The intravenous administration of these solutions may cause fluid overloading resulting in dilution of serum electrolyte concentrations, overhydration, congested states or pulmonary edema.

Because dosages of these drugs are titrated to response (see ),


What are the precautions of Theophylline in Dextrose?

General

Careful consideration of the various interacting drugs and physiologic conditions that can alter theophylline clearance and require dosage adjustment should occur prior to initiation of theophylline therapy and prior to increases in theophylline dose (see ).

Monitoring Serum Theophylline Concentrations

  • Before making a dose increase to determine whether the serum concentration is sub-therapeutic in a patient who continues to be symptomatic.
  • Whenever signs or symptoms of theophylline toxicity are present.
  • Whenever there is a new illness, worsening of an existing concurrent illness or a change in the patient's treatment regimen that may alter theophylline clearance ( fever greater than 102°F sustained for greater than or equal to 24 hours, hepatitis, or drugs listed in are added or discontinued).


Serum theophylline concentration measurements are readily available and should be used to determine whether the dosage is appropriate. Specifically, the serum theophylline concentration should be measured as follows:

In patients who have received no theophylline in the previous 24 hours, a serum concentration should be measured 30 minutes after completion of the intravenous loading dose to determine whether the serum concentration is less than 10 mcg/mL indicating the need for an additional loading dose or greater than 20 mcg/mL indicating the need to delay starting the constant IV infusion. Once the infusion has begun, a second measurement should be obtained after one expected half life ( approximately 4 hours in children age 1 to 9 years and 8 hours in non-smoking adults; see for the expected half life in additional patient populations). The second measurement should be compared to the first to determine the direction in which the serum concentration has changed. The infusion rate can then be adjusted before steady state is reached in an attempt to prevent an excessive or sub-therapeutic theophylline concentration from being achieved.

If a patient has received theophylline in the previous 24 hours, the serum concentration should be measured before administering an intravenous loading dose to make sure that it is safe to do so. If a loading dose is not indicated ( the serum theophylline concentration is greater than or equal to 10 mcg/mL), a second measurement should be obtained as above at the appropriate time after starting the intravenous infusion. If, on the other hand, a loading dose is indicated (see for guidance on selection of the appropriate loading dose), a second blood sample should be obtained after the loading dose and a third sample should be obtained one expected half-life after starting the constant infusion to determine the direction in which the serum concentration has changed.

Once the above procedures related to initiation of intravenous theophylline infusion have been completed, subsequent serum samples for determination of theophylline concentration should be obtained at 24-hour intervals for the duration of the infusion. The theophylline infusion rate should be increased or decreased as appropriate based on the serum theophylline levels.

When signs or symptoms of theophylline toxicity are present, the intravenous infusion should be stopped and a serum sample for theophylline concentration should be obtained as soon as possible, analyzed immediately, and the result reported to the clinician without delay. In patients in whom decreased serum protein binding is suspected ( cirrhosis, women during the third trimester of pregnancy), the concentration of unbound theophylline should be measured and the dosage adjusted to achieve an unbound concentration of 6–12 mcg/mL.

Saliva concentrations of theophylline cannot be used reliably to adjust dosage without special techniques.

Clinical evaluation and periodic laboratory determinations are necessary to monitor changes in fluid balance, electrolyte concentrations, and acid-base balance during prolonged therapy or whenever the condition of the patient warrants such evaluation.

Do not use plastic containers in series connection.

If administration is controlled by a pumping device, care must be taken to discontinue pumping action before the container runs dry or air embolism may result. If administration is not controlled by a pumping device, refrain from applying excessive pressure (greater than 300mmHg) causing distortion to the container such as wringing or twisting. Such handling could result in breakage of the container.

This solution is intended for intravenous administration using sterile equipment. It is recommended that intravenous administration apparatus be replaced at least once every 24 hours.

Use only if solution is clear and container and seals are intact.

Effects on Laboratory Tests

As a result of its pharmacological effects, theophylline at serum concentrations within the 10–20 mcg/mL range modestly increases plasma glucose (from a mean of 88 mg% to 98 mg%), uric acid (from a mean of 4 mg/dl to 6 mg/dl), free fatty acids (from a mean of 451 Eq/L to 800 Eq/L, total cholesterol (from a mean of 140 vs 160 mg/dl), HDL (from a mean of 36 to 50 mg/dl), HDL/LDL ratio (from a mean of 0.5 to 0.7), and urinary free cortisol excretion (from a mean of 44 to 63 mcg/24 hr). Theophylline at serum concentrations within the 10–20 mcg/mL range may also transiently decrease serum concentrations of triiodothyronine (144 before, 131 after one week and 142 ng/dl after 4 weeks of theophylline). The clinical importance of these changes should be weighed against the potential therapeutic benefit of theophylline in individual patients.

Drug Interactions

Theophylline interacts with a wide variety of drugs. The interaction may be pharmacodynamic, alterations in the therapeutic response to theophylline or another drug or occurrence of adverse effects without a change in serum theophylline concentration. More frequently, however, the interaction is pharmacokinetic, the rate of theophylline clearance is altered by another drug resulting in increased or decreased serum theophylline concentrations. Theophylline only rarely alters the pharmacokinetics of other drugs.

The drugs listed in have the potential to produce clinically significant pharmacodynamic or pharmacokinetic interactions with theophylline. The information in the "Effect" column of assumes that the interacting drug is being added to a steady-state theophylline regimen. If theophylline is being initiated in a patient who is already taking a drug that inhibits theophylline clearance ( cimetidine, erythromycin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be smaller. Conversely, if theophylline is being initiated in a patient who is already taking a drug that enhances theophylline clearance ( rifampin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be larger. Discontinuation of a concomitant drug that increases theophylline clearance will result in accumulation of theophylline to potentially toxic levels, unless the theophylline dose is appropriately reduced. Discontinuation of a concomitant drug that inhibits theophylline clearance will result in decreased serum theophylline concentrations, unless the theophylline dose is appropriately increased.

The drugs listed in have either been documented not to interact with theophylline or do not produce a clinically significant interaction ( less than 15% change in theophylline clearance).

The listing of drugs in and are current as of September 1, 1995. New interactions are continuously being reported for theophylline, especially with new chemical entities. Before addition of a newly available drug in a patient receiving theophylline, the package insert of the new drug and/or the medical literature should be consulted to determine if an interaction between the new drug and theophylline has been reported.

Table II. Clinically significant drug interactions with theophylline.
DrugType of InteractionEffect
AdenosineTheophylline blocks adenosine receptors.Higher doses of adenosine may be required to achieve desired effect.
AlcoholA single large dose of alcohol (3 mL/kg of whiskey) decreases theophylline clearance for up to 24 hours.30% increase
AllopurinolDecreases theophylline clearance at allopurinol doses greater than or equal to 600 mg/day.25% increase
AminoglutethimideIncreases theophylline clearance by induction of microsomal enzyme activity.25% decrease
CarbamazepineSimilar to aminoglutethimide.30% decrease
CimetidineDecreases theophylline clearance by inhibiting cytochrome P450 1A2.70% increase
CiprofloxacinSimilar to cimetidine.40% increase
ClarithromycinSimilar to erythromycin.25% increase
DiazepamBenzodiazepines increase CNS concentrations of adenosine, a potent CNS depressant, while theophylline blocks adenosine receptors.Larger diazepam doses may be required to produce desired level of sedation. Discontinuation of theophylline without reduction of diazepam dose may result in respiratory depression.
DisulfiramDecreases theophylline clearance by inhibiting hydroxylation and demethylation.50% increase
EnoxacinSimilar to cimetidine.300% increase
EphedrineSynergistic CNS effects.Increased frequency of nausea, nervousness, and insomnia.
ErythromycinErythromycin metabolite decreases theophylline clearance by inhibiting cytochrome P450 3A3.35% increase. Erythromycin steady-state serum concentrations decrease by a similar amount.
EstrogenEstrogen containing oral contraceptives decrease theophylline clearance in a dose-dependent fashion. The effect of progesterone on theophylline clearance is unknown.30% increase
FlurazepamSimilar to diazepam.Similar to diazepam.
FluvoxamineSimilar to cimetidine.Similar to cimetidine.
HalothaneHalothane sensitizes the myocardium to catecholamines, theophylline increases release of endogenous catecholamines.Increased risk of ventricular arrhythmias.
Interferon, human recombinant alpha-ADecreases theophylline clearance.100% increase
Isoproterenol (IV)Increases theophylline clearance.20% decrease
KetaminePharmacologicMay lower theophylline seizure threshold.
LithiumTheophylline increases renal lithium clearance.Lithium dose required to achieve a therapeutic serum concentration increased an average of 60%.
LorazepamSimilar to diazepam.Similar to diazepam.
Methotrexate (MTX)Decreases theophylline clearance.20% increase after low dose MTX, higher dose MTX may have a greater effect.
MexiletineSimilar to disulfiram.80% increase
MidazolamSimilar to diazepam.Similar to diazepam.
MoricizineIncreases theophylline clearance.25% decrease
PancuroniumTheophylline may antagonize non-depolarizing neuromuscular blocking effects; possibly due to phosphodiesterase inhibition.Larger dose of pancuronium may be required to achieve neuromuscular blockade.
PentoxifyllineDecreases theophylline clearance.30% increase
Phenobarbital (PB)Similar to aminoglutethimide.25% decrease after two weeks of concurrent PB.
PhenytoinPhenytoin increases theophylline clearance by increasing microsomal enzyme activity. Theophylline decreases phenytoin absorption.Serum theophylline phenytoin concentrations decrease about 40%.
PropafenoneDecreases theophylline clearance and pharmacologic interaction.40% increase. Beta-2 blocking effect may decrease efficacy of theophylline.
PropranololSimilar to cimetidine and pharmacologic interaction.100% increase. Beta-2 blocking effect may decrease efficacy of theophylline.
RifampinIncreases theophylline clearance by increasing cytochrome P450 1A2 and 3A3 activity.20–40% decrease
SulfinpyrazoneIncreases theophylline clearance by increasing demethylation and hydroxylation. Decreases renal clearance of theophylline.20% decrease
TacrineSimilar to cimetidine, also increases renal clearance theophylline.90% increase
ThiabendazoleDecreases theophylline clearance.190% increase
TiclopidineDecreases theophylline clearance.60% increase
TroleandomycinSimilar to erythromycin.33–100% increase depending on troleandomycin dose.
VerapamilSimilar to disulfiram.20% increase
Table III. Drugs that have been documented not to interact with theophylline or drugs that produce no clinically significant interaction with theophylline.
 albuterol, systemic and inhaled medroxyprogesterone
 amoxicillin methylprednisolone
 ampicillin, with or without sulbactam metronidazole
 atenolol metoprolol
 azithromycin nadolol
 caffeine, dietary ingestion nifedipine
 cefaclor nizatidine
 co-trimoxazole norfloxacin
   (trimethoprim and sulfamethoxazole) ofloxacin
 diltiazem omeprazole
 dirithromycin prednisone, prednisolone
 enflurane ranitidine
 famotidine rifabutin
 felodipine roxithromycin
 finasteride sorbitol
 hydrocortisone   (purgative doses do not inhibit
 isoflurane     theophylline absorption)
 isoniazid sucralfate
 isradipine terbutaline, systemic
 influenza vaccine terfenadine
 ketoconazole tetracycline
 lomefloxacin tocainide
 mebendazole 


The Effect of Other Drugs on Theophylline Serum Concentration Measurements

Most serum theophylline assays in clinical use are immunoassays which are specific for theophylline. Other xanthines such as caffeine, dyphylline, and pentoxifylline are not detected by these assays. Some drugs ( cefazolin, cephalothin), however, may interfere with certain HPLC techniques. Caffeine and xanthine metabolites in neonates or patients with renal dysfunction may cause the reading from some dry reagent office methods to be higher than the actual serum theophylline concentration.

Carcinogenesis, Mutagenesis, and Impairment of Fertility

Long term carcinogenicity studies have been carried out in mice (oral doses 30–150 mg/kg) and rats (oral doses 5–75 mg/kg). Results are pending. Theophylline has been studied in Ames salmonella, and cytogenetics, micronucleus and Chinese hamster ovary test systems and has not been shown to be genotoxic.

In a 14 week continuous breeding study, theophylline, administered to mating pairs of B6C3F mice at oral doses of 120, 270 and 500 mg/kg (approximately 1.0–3.0 times the human dose on a mg/m basis) impaired fertility, as evidenced by decreases in the number of live pups per litter, decreases in the mean number of litters per fertile pair, and increases in the gestation period at the high dose as well as decreases in the proportion of pups born alive at the mid and high dose. In 13 week toxicity studies, theophylline was administered to F344 rats and B6C3F mice at oral doses of 40–300 mg/kg (approximately 2.0 times the human dose on a mg/m basis). At the high dose, systemic toxicity was observed in both species including decreases in testicular weight.

Pregnancy

Nursing Mothers

Theophylline is excreted into breast milk and may cause irritability or other signs of mild toxicity in nursing human infants. The concentration of theophylline in breast milk is about equivalent to the maternal serum concentration. An infant ingesting a liter of breast milk containing 10–20 mcg/mL of theophylline per day is likely to receive 10–20 mg of theophylline per day. Serious adverse effects in the infant are unlikely unless the mother has toxic serum theophylline concentrations.

Pediatric Use

Theophylline is safe and effective for the approved indications in pediatric patients (see ). The constant infusion rate of intravenous theophylline must be selected with caution in pediatric patients since the rate of theophylline clearance is highly variable across the age range of neonates to adolescents (see , , and ). Due to the immaturity of theophylline metabolic pathways in pediatric patients under the age of one year, particular attention to dosage selection and frequent monitoring of serum theophylline concentrations are required when theophylline is prescribed to pediatric patients in this age group.

Geriatric Use

Elderly patients are at significantly greater risk of experiencing serious toxicity from theophylline than younger patients due to pharmacokinetic and pharmacodynamic changes associated with aging. Theophylline clearance is reduced in patients greater than 60 years of age, resulting in increased serum theophylline concentrations in response to a given theophylline infusion rate. Protein binding may be decreased in the elderly resulting in a larger proportion of the total serum theophylline concentration in the pharmacologically active unbound form. Elderly patients also appear to be more sensitive to the toxic effects of theophylline after chronic overdosage than younger patients. For these reasons, the maximum infusion rate of theophylline in patients greater than 60 years of age ordinarily should not exceed 17 mg/hr unless the patient continues to be symptomatic and the steady state serum theophylline concentration is less than 10 mcg/mL (see ). Theophylline infusion rate greater than 17 mg/hr should be prescribed with caution in elderly patients.


What are the side effects of Theophylline in Dextrose?

Sorry No records found


What should I look out for while using Theophylline in Dextrose?

Theophylline in 5% Dextrose Injection USP is contraindicated in patients with a history of hypersensitivity to theophylline or other components in the product.

Solutions containing dextrose may be contraindicated in patients with known allergy to corn or corn products.


What might happen if I take too much Theophylline in Dextrose?


How should I store and handle Theophylline in Dextrose?

Store at 20° to 25°C (68° to 77°F).[See USP Controlled Room Temperature]DISPENSE IN TIGHT, LIGHT-RESISTANT CONTAINER.Store at 20° to 25°C (68° to 77°F).[See USP Controlled Room Temperature]DISPENSE IN TIGHT, LIGHT-RESISTANT CONTAINER.Store at 20° to 25°C (68° to 77°F).[See USP Controlled Room Temperature]DISPENSE IN TIGHT, LIGHT-RESISTANT CONTAINER.Theophylline in 5% Dextrose Injection USP is supplied sterile and nonpyrogenic in EXCEL Containers. The 500 mL containers are packaged 24 per case.


×

Clinical Information

Chemical Structure

No Image found
Clinical Pharmacology

Theophylline has two distinct actions in the airways of patients with reversible obstruction; smooth muscle relaxation ( bronchodilation) and suppression of the response of the airways to stimuli ( non-bronchodilator prophylactic effects). While the mechanisms of action of theophylline are not known with certainty, studies in animals suggest that bronchodilatation is mediated by the inhibition of two isozymes of phosphodiesterase (PDE III and, to a lesser extent, PDE IV) while non-bronchodilator prophylactic actions are probably mediated through one or more different molecular mechanisms, that do not involve inhibition of PDE III or antagonism of adenosine receptors. Some of the adverse effects associated with theophylline appear to be mediated by inhibition of PDE III ( hypotension, tachycardia, headache, and emesis) and adenosine receptor antagonism ( alterations in cerebral blood flow).

Theophylline increases the force of contraction of diaphragmatic muscles. This action appears to be due to enhancement of calcium uptake through an adenosine-mediated channel.

Non-Clinical Toxicology
Theophylline in 5% Dextrose Injection USP is contraindicated in patients with a history of hypersensitivity to theophylline or other components in the product.

Solutions containing dextrose may be contraindicated in patients with known allergy to corn or corn products.

Theophylline interacts with a wide variety of drugs. The interaction may be pharmacodynamic, alterations in the therapeutic response to theophylline or another drug or occurrence of adverse effects without a change in serum theophylline concentration. More frequently, however, the interaction is pharmacokinetic, the rate of theophylline clearance is altered by another drug resulting in increased or decreased serum theophylline concentrations. Theophylline only rarely alters the pharmacokinetics of other drugs.

The drugs listed in have the potential to produce clinically significant pharmacodynamic or pharmacokinetic interactions with theophylline. The information in the "Effect" column of assumes that the interacting drug is being added to a steady-state theophylline regimen. If theophylline is being initiated in a patient who is already taking a drug that inhibits theophylline clearance ( cimetidine, erythromycin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be smaller. Conversely, if theophylline is being initiated in a patient who is already taking a drug that enhances theophylline clearance ( rifampin), the dose of theophylline required to achieve a therapeutic serum theophylline concentration will be larger. Discontinuation of a concomitant drug that increases theophylline clearance will result in accumulation of theophylline to potentially toxic levels, unless the theophylline dose is appropriately reduced. Discontinuation of a concomitant drug that inhibits theophylline clearance will result in decreased serum theophylline concentrations, unless the theophylline dose is appropriately increased.

The drugs listed in have either been documented not to interact with theophylline or do not produce a clinically significant interaction ( less than 15% change in theophylline clearance).

The listing of drugs in and are current as of September 1, 1995. New interactions are continuously being reported for theophylline, especially with new chemical entities. Before addition of a newly available drug in a patient receiving theophylline, the package insert of the new drug and/or the medical literature should be consulted to determine if an interaction between the new drug and theophylline has been reported.

Careful consideration of the various interacting drugs and physiologic conditions that can alter theophylline clearance and require dosage adjustment should occur prior to initiation of theophylline therapy and prior to increases in theophylline dose (see ).

Adverse reactions associated with theophylline are generally mild when serum theophylline concentrations are less than 20 mcg/mL and mainly consist of transient caffeine-like adverse effects such as nausea, vomiting, headache, and insomnia. When serum theophylline concentrations exceed 20 mcg/mL, however, theophylline produces a wide range of adverse reactions including persistent vomiting, cardiac arrhythmias, and intractable seizures which can be lethal (see ).

Other adverse reactions that have been reported at serum theophylline concentrations less than 20 mcg/mL include diarrhea, irritability, restlessness, fine skeletal muscle tremors, and transient diuresis. In patients with hypoxia secondary to COPD, multifocal atrial tachycardia and flutter have been reported at serum theophylline concentrations greater than or equal to 15 mcg/mL. There have been a few isolated reports of seizures at serum theophylline concentrations less than 20 mcg/mL in patients with an underlying neurological disease or in elderly patients. The occurrence of seizures in elderly patients with serum theophylline concentrations less than 20 mcg/mL may be secondary to decreased protein binding resulting in a larger proportion of the total serum theophylline concentration in the pharmacologically active unbound form. The clinical characteristics of the seizures reported in patients with serum theophylline concentrations less than 20 mcg/mL have generally been milder than seizures associated with excessive serum theophylline concentrations resulting from an overdose (, they have generally been transient, often stopped without anticonvulsant therapy, and did not result in neurological residua). There have been reports of non-convulsive status epilepticus in patients receiving theophylline, and this possibility should be considered in patients with abnormal central nervous system function and a history of theophylline administration. Hypercalcemia has been reported in a patient with hyperthyroid disease at therapeutic theophylline concentrations (see ).

Reactions which may occur because of the solution or the technique of administration include febrile response, infection at the site of injection, venous thrombosis or phlebitis extending from the site of injection, extravasation and hypervolemia.

×

Reference

This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"

While we update our database periodically, we cannot guarantee it is always updated to the latest version.

×

Review

Rate this treatment and share your opinion


Helpful tips to write a good review:

  1. Only share your first hand experience as a consumer or a care giver.
  2. Describe your experience in the Comments area including the benefits, side effects and how it has worked for you. Do not provide personal information like email addresses or telephone numbers.
  3. Fill in the optional information to help other users benefit from your review.

Reason for Taking This Treatment

(required)

Click the stars to rate this treatment

This medication has worked for me.




This medication has been easy for me to use.




Overall, I have been satisfied with my experience.




Write a brief description of your experience with this treatment:

2000 characters remaining

Optional Information

Help others benefit from your review by filling in the information below.
I am a:
Gender:
×

Professional

Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72
×

Tips

Tips

×

Interactions

Interactions

A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).