Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Zegerid with Magnesium Hydroxide
Overview
What is Zegerid with Magnesium Hydroxide?
ZEGERID® with Magnesium Hydroxide (omeprazole/sodium bicarbonate/magnesium hydroxide) is a combination of omeprazole, a proton-pump inhibitor, and sodium bicarbonate plus magnesium hydroxide, both of which are antacids. Omeprazole is a substituted benzimidazole, 5-methoxy-2-[[(4-methoxy-3,5-dimethyl-2-pyridinyl)methyl]sulfinyl]-1-benzimidazole, a racemic mixture of two enantiomers that inhibits gastric acid secretion. Its empirical formula is CHNOS, with a molecular weight of 345.42. The structural formula is:
Omeprazole is a white to off-white crystalline powder which melts with decomposition at about 155°C. It is a weak base, freely soluble in ethanol and methanol, and slightly soluble in acetone and isopropanol and very slightly soluble in water. The stability of omeprazole is a function of pH; it is rapidly degraded in acid media, but has acceptable stability under alkaline conditions.
ZEGERID with Magnesium Hydroxide is available in two strengths, 40 mg and 20 mg of omeprazole, and is formulated as an immediate-release chewable tablet. Each chewable tablet contains either 40 mg or 20 mg of omeprazole and 600 mg of sodium bicarbonate plus 700 mg of magnesium hydroxide with the following inactive ingredients: hydroxypropyl cellulose, croscarmellose sodium, xylitol, sucralose, flavoring, magnesium stearate, and FD&C Red #40 Aluminum Lake.
What does Zegerid with Magnesium Hydroxide look like?
What are the available doses of Zegerid with Magnesium Hydroxide?
Sorry No records found.
What should I talk to my health care provider before I take Zegerid with Magnesium Hydroxide?
Sorry No records found
How should I use Zegerid with Magnesium Hydroxide?
ZEGERID with Magnesium Hydroxide is indicated for short-term treatment of active duodenal ulcer. Most patients heal within four weeks. Some patients may require an additional four weeks of therapy.
ZEGERID with Magnesium Hydroxide (omeprazole/sodium bicarbonate/magnesium hydroxide) is available as chewable tablets in 20 mg and 40 mg strengths for adult use. Directions for use for each indication are summarized in .
Because ZEGERID chewable tablets contain magnesium hydroxide, the chewable tablets should not be substituted for other dosage forms (eg, ZEGERID Powder for Oral Suspension or ZEGERID Capsules).
Since both the 20-mg and 40-mg chewable tablets contain the same amount of sodium bicarbonate (600 mg) and magnesium hydroxide (700 mg), two 20-mg chewable tablets are not equivalent to one 40-mg chewable tablet; therefore, two 20-mg chewable tablets should not be substituted for one 40-mg chewable tablet.
ZEGERID with Magnesium Hydroxide should be taken on an empty stomach at least one hour before a meal.
What interacts with Zegerid with Magnesium Hydroxide?
ZEGERID with Magnesium Hydroxide is contraindicated in patients with known hypersensitivity to any components of the formulation.
What are the warnings of Zegerid with Magnesium Hydroxide?
Sorry No Records found
What are the precautions of Zegerid with Magnesium Hydroxide?
General
Symptomatic response to therapy with omeprazole does not preclude the presence of gastric malignancy.
Atrophic gastritis has been noted occasionally in gastric corpus biopsies from patients treated long-term with omeprazole.
Each 20 mg and 40 mg ZEGERID with Magnesium Hydroxide chewable tablet contains 600 mg (7 mEq) of sodium bicarbonate (equivalent to 164 mg of Na+) and 700 mg (24 mEq) of magnesium hydroxide (equivalent to 292 mg of Mg++).
The sodium content of this product should be taken into consideration when administering to patients on a sodium-restricted diet.
Magnesium hydroxide should be used with caution in neonates, elderly, and in patients with renal impairment or renal disease due to increased risk of developing hypermagnesemia and magnesium toxicity. Magnesium hydroxide should not be used in patients with renal failure unless serum magnesium levels are being closely monitored.
Sodium bicarbonate is contraindicated in patients with metabolic alkalosis and hypocalcemia. Sodium bicarbonate should be used with caution in patients with Bartter's syndrome, hypokalemia, respiratory alkalosis, and problems with acid-base balance. Long-term administration of bicarbonate with calcium or milk can cause milk-alkali syndrome.
Information for Patients
ZEGERID with Magnesium Hydroxide should be taken on an empty stomach at least one hour prior to a meal. ZEGERID with Magnesium Hydroxide chewable tablets are available in 40 mg and 20 mg dosage strengths of omeprazole with 600 mg sodium bicarbonate plus 700 mg magnesium hydroxide per tablet.
Directions for Use: Chew the tablet and swallow with water. DO NOT USE OTHER LIQUIDS.
Drug Interactions
Omeprazole can prolong the elimination of diazepam, warfarin and phenytoin, drugs that are metabolized by oxidation in the liver. There have been reports of increased INR and prothrombin time in patients receiving proton pump inhibitors, including omeprazole, and warfarin concomitantly. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin may need to be monitored for increases in INR and prothrombin time. Although in normal subjects no interaction with theophylline or propranolol was found, there have been clinical reports of interaction with other drugs metabolized via the cytochrome P-450 system (eg, cyclosporine, disulfiram, benzodiazepines). Patients should be monitored to determine if it is necessary to adjust the dosage of these drugs when taken concomitantly with ZEGERID.
Because of its profound and long-lasting inhibition of gastric acid secretion, it is theoretically possible that omeprazole may interfere with absorption of drugs where gastric pH is an important determinant of their bioavailability (eg, ketoconazole, ampicillin esters, and iron salts). In the clinical efficacy trials antacids were used concomitantly with the administration of omeprazole.
Concomitant administration of omeprazole and atazanavir has been reported to reduce the plasma levels of atazanavir.
Concomitant administration of omeprazole and tacrolimus may increase the serum levels of tacrolimus.
Co-administration of omeprazole and clarithromycin have resulted in increases of plasma levels of omeprazole, clarithromycin, and 14-hydroxy-clarithromycin (see also ).
Carcinogenesis, Mutagenesis, Impairment of Fertility
In two 24-month carcinogenicity studies in rats, omeprazole at daily doses of 1.7, 3.4, 13.8, 44.0 and 140.8 mg/kg/day (approximately 0.5 to 28.5 times the human dose of 40 mg/day, based on body surface area) produced gastric ECL cell carcinoids in a dose-related manner in both male and female rats; the incidence of this effect was markedly higher in female rats, which had higher blood levels of omeprazole. Gastric carcinoids seldom occur in the untreated rat. In addition, ECL cell hyperplasia was present in all treated groups of both sexes. In one of these studies, female rats were treated with 13.8 mg omeprazole/kg/day (approximately 2.8 times the human dose of 40 mg/day, based on body surface area) for one year, then followed for an additional year without the drug. No carcinoids were seen in these rats. An increased incidence of treatment-related ECL cell hyperplasia was observed at the end of one year (94% treated vs 10% controls). By the second year the difference between treated and control rats was much smaller (46% vs 26%) but still showed more hyperplasia in the treated group. Gastric adenocarcinoma was seen in one rat (2%). No similar tumor was seen in male or female rats treated for two years. For this strain of rat no similar tumor has been noted historically, but a finding involving only one tumor is difficult to interpret. In a 52-week toxicity study in Sprague-Dawley rats, brain astrocytomas were found in a small number of males that received omeprazole at dose levels of 0.4, 2, and 16 mg/kg/day (about 0.1 to 3.3 times the human dose of 40 mg/day, based on body surface area). No astrocytomas were observed in female rats in this study. In a 2-year carcinogenicity study in Sprague-Dawley rats, no astrocytomas were found in males and females at the high dose of 140.8 mg/kg/day (about 28.5 times the human dose of 40 mg/day, based on body surface area). A 78-week mouse carcinogenicity study of omeprazole did not show increased tumor occurrence, but the study was not conclusive. A 26-week p53 (+/-) transgenic mouse carcinogenicity study was not positive. Omeprazole was positive for clastogenic effects in an human lymphocyte chromosomal aberration assay, in one of two mouse micronucleus tests, and in an bone marrow cell chromosomal aberration assay. Omeprazole was negative in the Ames Test, an mouse lymphoma cell forward mutation assay and an rat liver DNA damage assay.
Omeprazole at oral doses up to 138 mg/kg/day (about 28 times the human dose of 40 mg/day, based on body surface area) was found to have no effect on the fertility and general reproductive performance in rats.
Pregnancy
There are no adequate and well-controlled studies on the use of omeprazole in pregnant women. The vast majority of reported experience with omeprazole during human pregnancy is first trimester exposure and the duration of use is rarely specified, e.g., intermittent vs. chronic. An expert review of published data on experiences with omeprazole use during pregnancy by TERIS – the Teratogen Information System – concluded that therapeutic doses during pregnancy are unlikely to pose a substantial teratogenic risk (the quantity and quality of data were assessed as fair).
Three epidemiological studies compared the frequency of congenital abnormalities among infants born to women who used omeprazole during pregnancy to the frequency of abnormalities among infants of women exposed to H2-receptor antagonists or other controls. A population-based prospective cohort epidemiological study from the Swedish Medical Birth Registry, covering approximately 99% of pregnancies, reported on 955 infants (824 exposed during the first trimester with 39 of these exposed beyond first trimester, and 131 exposed after the first trimester) whose mothers used omeprazole during pregnancy. In utero exposure to omeprazole was not associated with increased risk of any malformation (odds ratio 0.82, 95% CI 0.50-1.34), low birth weight or low Apgar score. The number of infants born with ventricular septal defects and the number of stillborn infants was slightly higher in the omeprazole exposed infants than the expected number in the normal population. The author concluded that both effects may be random.
A retrospective cohort study reported on 689 pregnant women exposed to either H2-blockers or omeprazole in the first trimester (134 exposed to omeprazole). The overall malformation rate was 4.4% (95% CI 3.6-5.3) and the malformation rate for first trimester exposure to omeprazole was 3.6% (95% CI 1.5-8.1). The relative risk of malformations associated with first trimester exposure to omeprazole compared with nonexposed women was 0.9 (95% CI 0.3-2.2). The study could effectively rule out a relative risk greater than 2.5 for all malformations. Rates of preterm delivery or growth retardation did not differ between the groups.
A controlled prospective observational study followed 113 women exposed to omeprazole during pregnancy (89% first trimester exposures). The reported rates of major congenital malformations was 4% for the omeprazole group, 2% for controls exposed to nonteratogens, and 2.8% in disease-paired controls (background incidence of major malformations 1-5%). Rates of spontaneous and elective abortions, preterm deliveries, gestational age at delivery, and mean birth weight did not differ between the groups. The sample size in this study has 80% power to detect a 5-fold increase in the rate of major malformation.
Several studies have reported no apparent adverse short term effects on the infant when single dose oral or intravenous omeprazole was administered to over 200 pregnant women as premedication for cesarean section under general anesthesia.
Teratology studies conducted in pregnant rats at doses up to 138 mg/kg/day (about 28 times the human dose of 40 mg/day, based on body surface area) and in pregnant rabbits at doses up to 69 mg/kg/day (about 28 times the human dose of 40 mg/day, based on body surface area) did not disclose any evidence for a teratogenic potential of omeprazole.
In rabbits, omeprazole in a dose range of 6.9 to 69 mg/kg/day (about 2.8 to 28 times the human dose of 40 mg/day, based on body surface area) produced dose-related increases in embryo-lethality, fetal resorptions and pregnancy disruptions. In rats, dose-related embryo/fetal toxicity and postnatal developmental toxicity were observed in offspring resulting from parents treated with omeprazole at 13.8 to 138 mg/kg/day (about 2.8 to 28 times the human dose of 40 mg/day, based on body surface area).
Chronic use of sodium bicarbonate may lead to systemic alkalosis and increased sodium intake can produce edema and weight increase.
Hypermagnesemia has been reported in infants whose mothers were using magnesium-containing antacid products chronically in high doses.
There are no adequate and well-controlled studies in pregnant women. Because animal studies and studies in humans cannot rule out the possibility of harm, omeprazole should be used during pregnancy only if the potential benefit to pregnant women justifies the potential risk to the fetus.
Nursing Mothers
Omeprazole concentrations have been measured in breast milk of a woman following oral administration of 20 mg. The peak concentration of omeprazole in breast milk was less than 7% of the peak serum concentration. The concentration will correspond to 0.004 mg of omeprazole in 200 mL of milk. Because omeprazole is excreted in human milk, because of the potential for serious adverse reactions in nursing infants from omeprazole, and because of the potential for tumorigenicity shown for omeprazole in rat carcinogenicity studies, a decision should be taken to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. In addition, sodium bicarbonate should be used with caution in nursing mothers.
Pediatric Use
Clinical studies have been conducted evaluating delayed-release omeprazole in pediatric patients. There are no adequate and well-controlled studies in pediatric patients with ZEGERID.
Geriatric Use
Omeprazole was administered to over 2000 elderly individuals (≥ 65 years of age) in clinical trials in the U.S. and Europe. There were no differences in safety and effectiveness between the elderly and younger subjects. Other reported clinical experience has not identified differences in response between the elderly and younger subjects, but greater sensitivity of some older individuals cannot be ruled out.
Pharmacokinetic studies with buffered omeprazole have shown the elimination rate was somewhat decreased in the elderly and bioavailability was increased. The plasma clearance of omeprazole was 250 mL/min (about half that of young subjects). The plasma half-life averaged one hour, about the same as that in nonelderly, healthy subjects taking ZEGERID. However, no dosage adjustment is necessary in the elderly. (See )
What are the side effects of Zegerid with Magnesium Hydroxide?
Omeprazole was generally well tolerated during domestic and international clinical trials in 3096 patients.
In the U.S. clinical trial population of 465 patients, the adverse experiences summarized in were reported to occur in 1% or more of patients on therapy with omeprazole. Numbers in parentheses indicate percentages of the adverse experiences considered by investigators as possibly, probably or definitely related to the drug.
Table 12
Additional adverse experiences occurring in < 1% of patients or subjects in domestic and/or international trials conducted with omeprazole, or occurring since the drug was marketed, are shown below within each body system. In many instances, the relationship to omeprazole was unclear.
Body As a Whole
Allergic reactions, including, rarely, anaphylaxis (see also Skin below), fever, pain, fatigue, malaise, abdominal swelling.
Cardiovascular
Chest pain or angina, tachycardia, bradycardia, palpitation, elevated blood pressure, and peripheral edema.
Gastrointestinal
Pancreatitis (some fatal), anorexia, irritable colon, flatulence, fecal discoloration, esophageal candidiasis, mucosal atrophy of the tongue, dry mouth, stomatitis. During treatment with omeprazole, gastric fundic gland polyps have been noted rarely. These polyps are benign and appear to be reversible when treatment is discontinued.
Gastroduodenal carcinoids have been reported in patients with Zollinger-Ellison syndrome on long-term treatment with omeprazole. This finding is believed to be a manifestation of the underlying condition, which is known to be associated with such tumors.
Hepatic
Mild and, rarely, marked elevations of liver function tests [ALT (SGPT), AST (SGOT), γ-glutamyl transpeptidase, alkaline phosphatase, and bilirubin (jaundice)]. In rare instances, overt liver disease has occurred, including hepatocellular, cholestatic, or mixed hepatitis, liver necrosis (some fatal), hepatic failure (some fatal), and hepatic encephalopathy.
Metabolic/Nutritional
Hyponatremia, hypoglycemia, and weight gain.
Musculoskeletal
Muscle cramps, myalgia, muscle weakness, joint pain, and leg pain.
Nervous System/Psychiatric
Psychic disturbances including depression, agitation, aggression, hallucinations, confusion, insomnia, nervousness, tremors, apathy, somnolence, anxiety, dream abnormalities; vertigo; paresthesia; and hemifacial dysesthesia.
Respiratory
Epistaxis, pharyngeal pain.
Skin
Rash and rarely, cases of severe generalized skin reactions including toxic epidermal necrolysis (TEN; some fatal), Stevens-Johnson syndrome, and erythema multiforme (some severe); purpura and/or petechiae (some with rechallenge); skin inflammation, urticaria, angioedema, pruritus, photosensitivity, alopecia, dry skin, and hyperhidrosis.
Special Senses
Tinnitus, taste perversion.
Ocular
Blurred vision, ocular irritation, dry eye syndrome, optic atrophy, anterior ischemic optic neuropathy, optic neuritis and double vision.
Urogenital
Interstitial nephritis (some with positive rechallenge), urinary tract infection, microscopic pyuria, urinary frequency, elevated serum creatinine, proteinuria, hematuria, glycosuria, testicular pain, and gynecomastia.
Hematologic
Rare instances of pancytopenia, agranulocytosis (some fatal), thrombocytopenia, neutropenia, leukopenia, anemia, leucocytosis, and hemolytic anemia have been reported.
The incidence of clinical adverse experiences in patients greater than 65 years of age was similar to that in patients 65 years of age or less.
Additional adverse reactions that could be caused by sodium bicarbonate include metabolic alkalosis, seizures, and tetany.
The use of magnesium hydroxide is associated with diarrhea, abdominal cramping, chalky taste, diuresis, dehydration, nausea, and vomiting.
Omeprazole | (n = 465) | Placebo | (n = 64) | Ranitidine | (n = 195) |
---|---|---|---|
Headache | 6.9 (2.4) | 6.3 | 7.7 (2.6) |
Diarrhea | 3.0 (1.9) | 3.1 (1.6) | 2.1 (0.5) |
Abdominal Pain | 2.4 (0.4) | 3.1 | 2.1 |
Nausea | 2.2 (0.9) | 3.1 | 4.1 (0.5) |
URI | 1.9 | 1.6 | 2.6 |
Dizziness | 1.5 (0.6) | 0.0 | 2.6 (1.0) |
Vomiting | 1.5 (0.4) | 4.7 | 1.5 (0.5) |
Rash | 1.5 (1.1) | 0.0 | 0.0 |
Constipation | 1.1 (0.9) | 0.0 | 0.0 |
Cough | 1.1 | 0.0 | 1.5 |
Asthenia | 1.1 (0.2) | 1.6 (1.6) | 1.5 (1.0) |
Back Pain | 1.1 | 0.0 | 0.5 | Omeprazole | (n = 2631) | Placebo | (n = 120) |
Abdominal pain | 5.2 | 3.3 | |
Asthenia | 1.3 | 0.8 | |
Constipation | 1.5 | 0.8 | |
Diarrhea | 3.7 | 2.5 | |
Flatulence | 2.7 | 5.8 | |
Nausea | 4.0 | 6.7 | |
Vomiting | 3.2 | 10.0 | |
Acid regurgitation | 1.9 | 3.3 | |
Headache | 2.9 | 2.5 |
What should I look out for while using Zegerid with Magnesium Hydroxide?
ZEGERID with Magnesium Hydroxide is contraindicated in patients with known hypersensitivity to any components of the formulation.
What might happen if I take too much Zegerid with Magnesium Hydroxide?
Reports have been received of overdosage with omeprazole in humans. Doses ranged up to 2400 mg (120 times the usual recommended clinical dose). Manifestations were variable, but included confusion, drowsiness, blurred vision, tachycardia, nausea, vomiting, diaphoresis, flushing, headache, dry mouth, and other adverse reactions similar to those seen in normal clinical experience. (See ) Symptoms were transient, and no serious clinical outcome has been reported when omeprazole was taken alone. No specific antidote for omeprazole overdosage is known. Omeprazole is extensively protein bound and is, therefore, not readily dialyzable. In the event of overdosage, treatment should be symptomatic and supportive.
As with the management of any overdose, the possibility of multiple drug ingestion should be considered. For current information on treatment of any drug overdose, a certified Regional Poison Control Center should be contacted. Telephone numbers are listed in the Physicians' Desk Reference (PDR) or local telephone book.
Single oral doses of omeprazole at 1350, 1339, and 1200 mg/kg were lethal to mice, rats, and dogs, respectively. Animals given these doses showed sedation, ptosis, tremors, convulsions, and decreased activity, body temperature, and respiratory rate and increased depth of respiration.
In addition, a sodium bicarbonate overdose may cause hypocalcemia, hypokalemia, hypernatremia, and seizures.
Similarly, a magnesium overdose may lead to hypermagnesemia. Hypermagnesemia results in a depressant effect on the central nervous system, causing anorexia and nausea, and neuromuscular system. Magnesium toxicity causes hypotension, muscle weakness, and electrographic changes.
How should I store and handle Zegerid with Magnesium Hydroxide?
Store below 30°C (86°F).Manufactured by:DANBURY PHARMACAL, INC.Danbury, CT 06810Store below 30°C (86°F).Manufactured by:DANBURY PHARMACAL, INC.Danbury, CT 06810ZEGERID with Magnesium Hydroxide 20-mg Chewable Tablets:NDC 68012-152-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 40-mg Chewable Tablets:NDC 68012-154-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 20-mg Chewable Tablets:NDC 68012-152-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 40-mg Chewable Tablets:NDC 68012-154-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 20-mg Chewable Tablets:NDC 68012-152-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 40-mg Chewable Tablets:NDC 68012-154-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 20-mg Chewable Tablets:NDC 68012-152-30 Bottles of 30 chewable tabletsZEGERID with Magnesium Hydroxide 40-mg Chewable Tablets:NDC 68012-154-30 Bottles of 30 chewable tablets
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
Omeprazole is acid labile and thus rapidly degraded by gastric acid. ZEGERID with Magnesium Hydroxide is an immediate-release chewable tablet formulation that contains an antacid component (sodium bicarbonate plus magnesium hydroxide) which raises the gastric pH and thus protects omeprazole from acid degradation.
Non-Clinical Toxicology
ZEGERID with Magnesium Hydroxide is contraindicated in patients with known hypersensitivity to any components of the formulation.Omeprazole can prolong the elimination of diazepam, warfarin and phenytoin, drugs that are metabolized by oxidation in the liver. There have been reports of increased INR and prothrombin time in patients receiving proton pump inhibitors, including omeprazole, and warfarin concomitantly. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Patients treated with proton pump inhibitors and warfarin may need to be monitored for increases in INR and prothrombin time. Although in normal subjects no interaction with theophylline or propranolol was found, there have been clinical reports of interaction with other drugs metabolized via the cytochrome P-450 system (eg, cyclosporine, disulfiram, benzodiazepines). Patients should be monitored to determine if it is necessary to adjust the dosage of these drugs when taken concomitantly with ZEGERID.
Because of its profound and long-lasting inhibition of gastric acid secretion, it is theoretically possible that omeprazole may interfere with absorption of drugs where gastric pH is an important determinant of their bioavailability (eg, ketoconazole, ampicillin esters, and iron salts). In the clinical efficacy trials antacids were used concomitantly with the administration of omeprazole.
Concomitant administration of omeprazole and atazanavir has been reported to reduce the plasma levels of atazanavir.
Concomitant administration of omeprazole and tacrolimus may increase the serum levels of tacrolimus.
Co-administration of omeprazole and clarithromycin have resulted in increases of plasma levels of omeprazole, clarithromycin, and 14-hydroxy-clarithromycin (see also ).
Symptomatic response to therapy with omeprazole does not preclude the presence of gastric malignancy.
Atrophic gastritis has been noted occasionally in gastric corpus biopsies from patients treated long-term with omeprazole.
Each 20 mg and 40 mg ZEGERID with Magnesium Hydroxide chewable tablet contains 600 mg (7 mEq) of sodium bicarbonate (equivalent to 164 mg of Na+) and 700 mg (24 mEq) of magnesium hydroxide (equivalent to 292 mg of Mg++).
The sodium content of this product should be taken into consideration when administering to patients on a sodium-restricted diet.
Magnesium hydroxide should be used with caution in neonates, elderly, and in patients with renal impairment or renal disease due to increased risk of developing hypermagnesemia and magnesium toxicity. Magnesium hydroxide should not be used in patients with renal failure unless serum magnesium levels are being closely monitored.
Sodium bicarbonate is contraindicated in patients with metabolic alkalosis and hypocalcemia. Sodium bicarbonate should be used with caution in patients with Bartter's syndrome, hypokalemia, respiratory alkalosis, and problems with acid-base balance. Long-term administration of bicarbonate with calcium or milk can cause milk-alkali syndrome.
Omeprazole was generally well tolerated during domestic and international clinical trials in 3096 patients.
In the U.S. clinical trial population of 465 patients, the adverse experiences summarized in were reported to occur in 1% or more of patients on therapy with omeprazole. Numbers in parentheses indicate percentages of the adverse experiences considered by investigators as possibly, probably or definitely related to the drug.
Table 12
Additional adverse experiences occurring in < 1% of patients or subjects in domestic and/or international trials conducted with omeprazole, or occurring since the drug was marketed, are shown below within each body system. In many instances, the relationship to omeprazole was unclear.
Body As a Whole
Allergic reactions, including, rarely, anaphylaxis (see also Skin below), fever, pain, fatigue, malaise, abdominal swelling.
Cardiovascular
Chest pain or angina, tachycardia, bradycardia, palpitation, elevated blood pressure, and peripheral edema.
Gastrointestinal
Pancreatitis (some fatal), anorexia, irritable colon, flatulence, fecal discoloration, esophageal candidiasis, mucosal atrophy of the tongue, dry mouth, stomatitis. During treatment with omeprazole, gastric fundic gland polyps have been noted rarely. These polyps are benign and appear to be reversible when treatment is discontinued.
Gastroduodenal carcinoids have been reported in patients with Zollinger-Ellison syndrome on long-term treatment with omeprazole. This finding is believed to be a manifestation of the underlying condition, which is known to be associated with such tumors.
Hepatic
Mild and, rarely, marked elevations of liver function tests [ALT (SGPT), AST (SGOT), γ-glutamyl transpeptidase, alkaline phosphatase, and bilirubin (jaundice)]. In rare instances, overt liver disease has occurred, including hepatocellular, cholestatic, or mixed hepatitis, liver necrosis (some fatal), hepatic failure (some fatal), and hepatic encephalopathy.
Metabolic/Nutritional
Hyponatremia, hypoglycemia, and weight gain.
Musculoskeletal
Muscle cramps, myalgia, muscle weakness, joint pain, and leg pain.
Nervous System/Psychiatric
Psychic disturbances including depression, agitation, aggression, hallucinations, confusion, insomnia, nervousness, tremors, apathy, somnolence, anxiety, dream abnormalities; vertigo; paresthesia; and hemifacial dysesthesia.
Respiratory
Epistaxis, pharyngeal pain.
Skin
Rash and rarely, cases of severe generalized skin reactions including toxic epidermal necrolysis (TEN; some fatal), Stevens-Johnson syndrome, and erythema multiforme (some severe); purpura and/or petechiae (some with rechallenge); skin inflammation, urticaria, angioedema, pruritus, photosensitivity, alopecia, dry skin, and hyperhidrosis.
Special Senses
Tinnitus, taste perversion.
Ocular
Blurred vision, ocular irritation, dry eye syndrome, optic atrophy, anterior ischemic optic neuropathy, optic neuritis and double vision.
Urogenital
Interstitial nephritis (some with positive rechallenge), urinary tract infection, microscopic pyuria, urinary frequency, elevated serum creatinine, proteinuria, hematuria, glycosuria, testicular pain, and gynecomastia.
Hematologic
Rare instances of pancytopenia, agranulocytosis (some fatal), thrombocytopenia, neutropenia, leukopenia, anemia, leucocytosis, and hemolytic anemia have been reported.
The incidence of clinical adverse experiences in patients greater than 65 years of age was similar to that in patients 65 years of age or less.
Additional adverse reactions that could be caused by sodium bicarbonate include metabolic alkalosis, seizures, and tetany.
The use of magnesium hydroxide is associated with diarrhea, abdominal cramping, chalky taste, diuresis, dehydration, nausea, and vomiting.
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).