Disclaimer:
Medidex is not a provider of medical services and all information is provided for the convenience of the user. No medical decisions should be made based on the information provided on this website without first consulting a licensed healthcare provider.This website is intended for persons 18 years or older. No person under 18 should consult this website without the permission of a parent or guardian.
Zonisamide
Overview
What is Zonisamide?
Zonisamide is an antiseizure drug chemically classified as a sulfonamide and unrelated to other antiseizure agents. The active ingredient is zonisamide, 1,2-benzisoxazole-3-methanesulfonamide. The empirical formula is CHNOS with a molecular weight of 212.23. Zonisamide is a white powder, pKa = 10.2, and is moderately soluble in water (0.8 mg/mL) and 0.1 N HCl (0.5 mg/mL).
The chemical structure is:
Zonisamide is supplied for oral administration as capsules containing 25 mg, 50 mg and 100 mg zonisamide. Each capsule contains the labeled amount of zonisamide plus the following inactive ingredients: hydrogenated vegetable oil and microcrystalline cellulose. The capsule shell contains gelatin and titanium dioxide. Imprinting ink contains black iron oxide E172, butyl alcohol, dehydrated alcohol, isopropyl alcohol, potassium hydroxide, propylene glycol, purified water, shellac and strong ammonia solution. In addition 100 mg zonisamide capsule shell contains black iron oxide E172 and red iron oxide E172.
What does Zonisamide look like?








What are the available doses of Zonisamide?
Sorry No records found.
What should I talk to my health care provider before I take Zonisamide?
Sorry No records found
How should I use Zonisamide?
Zonisamide capsules are indicated as adjunctive therapy in the treatment of partial seizures in adults with epilepsy.
Zonisamide capsules are recommended as adjunctive therapy for the treatment of partial seizures in adults. Safety and efficacy in pediatric patients below the age of 16 have not been established. Zonisamide capsules should be administered once or twice daily, using 25 mg, 50 mg or 100 mg capsules. Zonisamide capsules are given orally and can be taken with or without food. Capsules should be swallowed whole.
What interacts with Zonisamide?
Zonisamide capsules are contraindicated in patients who have demonstrated hypersensitivity to sulfonamides or zonisamide.
What are the warnings of Zonisamide?
Array
Serious Skin Reactions
Consideration should be given to discontinuing zonisamide in patients who develop an otherwise unexplained rash. If the drug is not discontinued, patients should be observed frequently.
In the US and European randomized controlled trials, 6 of 269 (2.2%) zonisamide patients discontinued treatment because of rash compared to none on placebo. Across all trials during the US and European development, rash that led to discontinuation of zonisamide was reported in 1.4% of patients (12 events per 1000 patient-years of exposure). During Japanese development, serious rash or rash that led to study drug discontinuation was reported in 2% of patients (27.8 events per 1000 patient years). Rash usually occurred early in treatment, with 85% reported within 16 weeks in the US and European studies and 90% reported within two weeks in the Japanese studies. There was no apparent relationship of dose to the occurrence of rash.
Serious Hematologic Events
Two confirmed cases of aplastic anemia and one confirmed case of agranulocytosis were reported in the first 11 years of marketing in Japan, rates greater than generally accepted background rates. There were no cases of aplastic anemia and two confirmed cases of agranulocytosis in the US, European, or Japanese development programs. There is inadequate information to assess the relationship, if any, between dose and duration of treatment and these events.
Oligohidrosis and Hyperthermia in Pediatric Patients
Oligohidrosis, sometimes resulting in heat stroke and hospitalization, is seen in association with zonisamide in pediatric patients.
During the pre-approval development program in Japan, one case of oligohidrosis was reported in 403 pediatric patients, an incidence of 1 case per 285 patient-years of exposure. While there were no cases reported in the US or European development programs, fewer than 100 pediatric patients participated in these trials.
In the first 11 years of marketing in Japan, 38 cases were reported, an estimated reporting rate of about 1 case per 10,000 patient-years of exposure. In the first year of marketing in the US, 2 cases were reported, an estimated reporting rate of about 12 cases per 10,000 patient-years of exposure. These rates are underestimates of the true incidence because of under-reporting. There has also been one report of heat stroke in an 18-year-old patient in the US.
Decreased sweating and an elevation in body temperature above normal characterized these cases. Many cases were reported after exposure to elevated environmental temperatures. Heat stroke, requiring hospitalization, was diagnosed in some cases. There have been no reported deaths.
Pediatric patients appear to be at an increased risk for zonisamide-associated oligohidrosis and hyperthermia. Patients, especially pediatric patients, treated with zonisamide should be monitored closely for evidence of decreased sweating and increased body temperature, especially in warm or hot weather. Caution should be used when zonisamide is prescribed with other drugs that predispose patients to heat-related disorders; these drugs include, but are not limited to, carbonic anhydrase inhibitors and drugs with anticholinergic activity.
The practitioner should be aware that the safety and effectiveness of zonisamide in pediatric patients have not been established, and that zonisamide is not approved for use in pediatric patients.
Suicidal Behavior and Ideation
Antiepileptic drugs (AEDs), including zonisamide, increase the risk of suicidal thoughts or behavior in patients taking these drugs for any indication. Patients treated with any AED for any indication should be monitored for the emergence or worsening of depression, suicidal thoughts or behavior, and/or any unusual changes in mood or behavior.
Pooled analyses of 199 placebo-controlled clinical trials (mono- and adjunctive therapy) of 11 different AEDs showed that patients randomized to one of the AEDs had approximately twice the risk (adjusted Relative Risk 1.8, 95% CI:1.2, 2.7) of suicidal thinking or behavior compared to patients randomized to placebo. In these trials, which had a median treatment duration of 12 weeks, the estimated incidence rate of suicidal behavior or ideation among 27,863 AED-treated patients was 0.43%, compared to 0.24% among 16,029 placebo-treated patients, representing an increase of approximately one case of suicidal thinking or behavior for every 530 patients treated. There were four suicides in drug-treated patients in the trials and none in placebo-treated patients, but the number is too small to allow any conclusion about drug effect on suicide.
The increased risk of suicidal thoughts or behavior with AEDs was observed as early as one week after starting drug treatment with AEDs and persisted for the duration of treatment assessed. Because most trials included in the analysis did not extend beyond 24 weeks, the risk of suicidal thoughts or behavior beyond 24 weeks could not be assessed.
The risk of suicidal thoughts or behavior was generally consistent among drugs in the data analyzed. The finding of increased risk with AEDs of varying mechanisms of action and across a range of indications suggests that the risk applies to all AEDs used for any indication. The risk did not vary substantially by age (5-100 years) in the clinical trials analyzed.
Table 3 shows absolute and relative risk by indication for all evaluated AEDs.
Table 3: Risk by indication for antiepileptic drugs in the pooled analysis
The relative risk for suicidal thoughts or behavior was higher in clinical trials for epilepsy than in clinical trials for psychiatric or other conditions, but the absolute risk differences were similar for the epilepsy and psychiatric indications.
Anyone considering prescribing zonisamide or any other AED must balance the risk of suicidal thoughts or behavior with the risk of untreated illness. Epilepsy and many other illnesses for which AEDs are prescribed are themselves associated with morbidity and mortality and an increased risk of suicidal thoughts and behavior. Should suicidal thoughts and behavior emerge during treatment, the prescriber needs to consider whether the emergence of these symptoms in any given patient may be related to the illness being treated.
Patients, their caregivers, and families should be informed that AEDs increase the risk of suicidal thoughts and behavior and should be advised of the need to be alert for the emergence or worsening of the signs and symptoms of depression, any unusual changes in mood or behavior, or the emergence of suicidal thoughts, behavior, or thoughts about self-harm. Behaviors of concern should be reported immediately to healthcare providers (see , subsection below).
Indication | Placebo Patients with Events Per 1000 Patients | Drug Patients with Events Per 1000 Patients | Relative Risk: Incidence of Events in Drug Patients/Incidence in Placebo Patients | Risk Difference: Additional Drug Patients with Events Per 1000 Patients |
Epilepsy | 1.0 | 3.4 | 3.5 | 2.4 |
Psychiatric | 5.7 | 8.5 | 1.5 | 2.9 |
Other | 1.0 | 1.8 | 1.9 | 0.9 |
Total | 2.4 | 4.3 | 1.8 | 1.9 |
Seizures on Withdrawal
As with other AEDs, abrupt withdrawal of zonisamide in patients with epilepsy may precipitate increased seizure frequency or status epilepticus. Dose reduction or discontinuation of zonisamide should be done gradually.
Teratogenicity
Women of child bearing potential who are given zonisamide should be advised to use effective contraception. Zonisamide was teratogenic in mice, rats, and dogs and embryolethal in monkeys when administered during the period of organogenesis. A variety of fetal abnormalities, including cardiovascular defects, and embryo-fetal deaths occurred at maternal plasma levels similar to or lower than therapeutic levels in humans. These findings suggest that the use of zonisamide during pregnancy in humans may present a significant risk to the fetus (see subsection). It cannot be said with any confidence, however, that even mild seizures do not pose some hazards to the developing fetus. Zonisamide should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Cognitive/ Neuropsychiatric Adverse Events
Use of zonisamide was frequently associated with central nervous system-related adverse events. The most significant of these can be classified into three general categories: 1) psychiatric symptoms, including depression and psychosis, 2) psychomotor slowing, difficulty with concentration, and speech or language problems, in particular, word-finding difficulties, and 3) somnolence or fatigue.
In placebo-controlled trials, 2.2% of patients discontinued zonisamide or were hospitalized for depression compared to 0.4% of placebo patients, while 1.1% of zonisamide and 0.4% of placebo patients attempted suicide. Among all epilepsy patients treated with zonisamide, 1.4% were discontinued and 1% were hospitalized because of reported depression or suicide attempts. In placebo-controlled trials, 2.2% of patients discontinued zonisamide or were hospitalized due to psychosis or psychosis-related symptoms compared to none of the placebo patients. Among all epilepsy patients treated with zonisamide, 0.9% were discontinued and 1.4% were hospitalized because of reported psychosis or related symptoms.
Psychomotor slowing and difficulty with concentration occurred in the first month of treatment and were associated with doses above 300 mg/day. Speech and language problems tended to occur after 6–10 weeks of treatment and at doses above 300 mg/day. Although in most cases these events were of mild to moderate severity, they at times led to withdrawal from treatment.
Somnolence and fatigue were frequently reported CNS adverse events during clinical trials with zonisamide. Although in most cases these events were of mild to moderate severity, they led to withdrawal from treatment in 0.2% of the patients enrolled in controlled trials. Somnolence and fatigue tended to occur within the first month of treatment. Somnolence and fatigue occurred most frequently at doses of 300–500 mg/day.
What are the precautions of Zonisamide?
General
Somnolence is commonly reported, especially at higher doses of zonisamide (see subsection). Zonisamide is metabolized by the liver and eliminated by the kidneys; caution should therefore be exercised when administering zonisamide to patients with hepatic and renal dysfunction (see subsection).
Kidney Stones
Among 991 patients treated during the development of zonisamide, 40 patients (4%) with epilepsy receiving zonisamide developed clinically possible or confirmed kidney stones (e.g. clinical symptomatology, sonography, etc.), a rate of 34 per 1000 patient-years of exposure (40 patients with 1168 years of exposure). Of these, 12 were symptomatic, and 28 were described as possible kidney stones based on sonographic detection. In nine patients, the diagnosis was confirmed by a passage of a stone or by a definitive sonographic finding. The rate of occurrence of kidney stones was 28.7 per 1000 patient-years of exposure in the first six months, 62.6 per 1000 patient-years of exposure between 6 and 12 months, and 24.3 per 1000 patient-years of exposure after 12 months of use. There are no normative sonographic data available for either the general population or patients with epilepsy. The clinical significance of the sonographic finding is unknown. The analyzed stones were composed of calcium or urate salts. In general, increasing fluid intake and urine output can help reduce the risk of stone formation, particularly in those with predisposing risk factors. It is unknown, however, whether these measures will reduce the risk of stone formation in patients treated with zonisamide.
Effect on Renal Function
In several clinical studies, zonisamide was associated with a statistically significant 8% mean increase from baseline of serum creatinine and blood urea nitrogen (BUN) compared to essentially no change in the placebo patients. The increase appeared to persist over time but was not progressive; this has been interpreted as an effect on glomerular filtration rate (GFR). There were no episodes of unexplained acute renal failure in clinical development in the US, Europe, or Japan. The decrease in GFR appeared within the first 4 weeks of treatment. In a 30-day study, the GFR returned to baseline within 2–3 weeks of drug discontinuation. There is no information about reversibility, after drug discontinuation, of the effects on GFR after long-term use. Zonisamide should be discontinued in patients who develop acute renal failure or a clinically significant sustained increase in the creatinine/BUN concentration. Zonisamide should not be used in patients with renal failure (estimated GFR < 50 mL/min) as there has been insufficient experience concerning drug dosing and toxicity.
Sudden Unexplained Death in Epilepsy
During the development of zonisamide, nine sudden unexplained deaths occurred among 991 patients with epilepsy receiving zonisamide for whom accurate exposure data are available. This represents an incidence of 7.7 deaths per 1000 patient years. Although this rate exceeds that expected in a healthy population, it is within the range of estimates for the incidence of sudden unexplained deaths in patients with refractory epilepsy not receiving zonisamide (ranging from 0.5 per 1000 patient-years for the general population of patients with epilepsy, to 2–5 per 1000 patient-years for patients with refractory epilepsy; higher incidences range from 9–15 per 1000 patient-years among surgical candidates and surgical failures). Some of the deaths could represent seizure-related deaths in which the seizure was not observed.
Status Epilepticus
Estimates of the incidence of treatment emergent status epilepticus in zonisamide-treated patients are difficult because a standard definition was not employed. Nonetheless, in controlled trials, 1.1% of patients treated with zonisamide had an event labeled as status epilepticus compared to none of the patients treated with placebo. Among patients treated with zonisamide across all epilepsy studies (controlled and uncontrolled), 1% of patients had an event reported as status epilepticus.
Information for Patients
Patients should be informed of the availability of a Medication Guide, and they should be instructed to read the Medication Guide prior to taking zonisamide. Patients should be instructed to take zonisamide only as prescribed.
Patients should be advised as follows: (See )
Laboratory Tests
In several clinical studies, zonisamide was associated with a mean increase in the concentration of serum creatinine and blood urea nitrogen (BUN) of approximately 8% over the baseline measurement. Consideration should be given to monitoring renal function periodically (see subsection).
Zonisamide was associated with an increase in serum alkaline phosphatase. In the randomized, controlled trials, a mean increase of approximately 7% over baseline was associated with zonisamide compared to a 3% mean increase in placebo-treated patients. These changes were not statistically significant. The clinical relevance of these changes is unknown.
Drug Interactions
Zonisamide had no appreciable effect on the steady state plasma concentrations of phenytoin, carbamazepine, or valproate during clinical trials. Zonisamide did not inhibit mixed-function liver oxidase enzymes (cytochrome P450), as measured in human liver microsomal preparations, . Zonisamide is not expected to interfere with the metabolism of other drugs that are metabolized by cytochrome P450 isozymes.
Drugs that induce liver enzymes increase the metabolism and clearance of zonisamide and decrease its half-life. The half-life of zonisamide following a 400 mg dose in patients concurrently on enzyme-inducing AEDs such as phenytoin, carbamazepine, or phenobarbital was between 27–38 hours; the half-life of zonisamide in patients concurrently on the non-enzyme inducing AED, valproate, was 46 hours. Concurrent medication with drugs that either induce or inhibit CYP3A4 would be expected to alter serum concentrations of zonisamide.
Zonisamide single dose pharmacokinetic parameters were not affected by cimetidine (300 mg four times a day for 12 days).
Carcinogenicity, Mutagenesis, Impairment of Fertility
No evidence of carcinogenicity was found in mice or rats following dietary administration of zonisamide for two years at doses of up to 80 mg/kg/day. In mice, this dose is approximately equivalent to the maximum recommended human dose (MRHD) of 400 mg/day on a mg/m basis. In rats, this dose is 1–2 times the MRHD on a mg/m basis.
Zonisamide increased mutation frequency in Chinese hamster lung cells in the absence of metabolic activation. Zonisamide was not mutagenic or clastogenic in the Ames test, mouse lymphoma assay, sister chromatid exchange test, and human lymphocyte cytogenetics assay , and the rat bone marrow cytogenetics assay .
Rats treated with zonisamide (20, 60, or 200 mg/kg) before mating and during the initial gestation phase showed signs of reproductive toxicity (decreased corpora lutea, implantations, and live fetuses) at all doses. The low dose in this study is approximately 0.5 times the maximum recommended human dose (MRHD) on a mg/m basis. The effect of zonisamide on human fertility is unknown.
Pregnancy
Pregnancy Category C (see subsection): Zonisamide was teratogenic in mice, rats, and dogs and embryolethal in monkeys when administered during the period of organogenesis. Fetal abnormalities or embryo-fetal deaths occurred in these species at zonisamide dosage and maternal plasma levels similar to or lower than therapeutic levels in humans, indicating that use of this drug in pregnancy entails a significant risk to the fetus. A variety of external, visceral, and skeletal malformations was produced in animals by prenatal exposure to zonisamide. Cardiovascular defects were prominent in both rats and dogs.
Following administration of zonisamide (10, 30, or 60 mg/kg/day) to pregnant dogs during organogenesis, increased incidences of fetal cardiovascular malformations (ventricular septal defects, cardiomegaly, various valvular and arterial anomalies) were found at doses of 30 mg/kg/day or greater. The low effect dose for malformations produced peak maternal plasma zonisamide levels (25 µg/mL) about 0.5 times the highest plasma levels measured in patients receiving the maximum recommended human dose (MRHD) of 400 mg/day. In dogs, cardiovascular malformations were found in approximately 50% of all fetuses exposed to the high dose, which was associated with maternal plasma levels (44 µg/mL) approximately equal to the highest levels measured in humans receiving the MRHD. Incidences of skeletal malformations were also increased at the high dose, and fetal growth retardation and increased frequencies of skeletal variations were seen at all doses in this study. The low dose produced maternal plasma levels (12 µg/mL) about 0.25 times the highest human levels.
In cynomolgus monkeys, administration of zonisamide (10 or 20 mg/kg/day) to pregnant animals during organogenesis resulted in embryo-fetal deaths at both doses. The possibility that these deaths were due to malformations cannot be ruled out. The lowest embryolethal dose in monkeys was associated with peak maternal plasma zonisamide levels (5 µg/mL) approximately 0.1 times the highest levels measured in patients at the MRHD.
In a mouse embryo-fetal development study, treatment of pregnant animals with zonisamide (125, 250, or 500 mg/kg/day) during the period of organogenesis resulted in increased incidences of fetal malformations (skeletal and/or craniofacial defects) at all doses tested. The low dose in this study is approximately 1.5 times the MRHD on a mg/m basis. In rats, increased frequencies of malformations (cardiovascular defects) and variations (persistent cords of thymic tissue, decreased skeletal ossification) were observed among the offspring of dams treated with zonisamide (20, 60, or 200 mg/kg/day) throughout organogenesis at all doses. The low effect dose is approximately 0.5 times the MRHD on a mg/m basis.
Perinatal death was increased among the offspring of rats treated with zonisamide (10, 30, or 60 mg/kg/day) from the latter part of gestation up to weaning at the high dose, or approximately 1.4 times the MRHD on a mg/m basis. The no effect level of 30 mg/kg/day is approximately 0.7 times the MRHD on a mg/m basis.
There are no adequate and well-controlled studies in pregnant women. Zonisamide should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
To provide information regarding the effects of in utero exposure to zonisamide, physicians are advised to recommend that pregnant patients taking zonisamide enroll in the NAAED Pregnancy Registry. This can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves.
Labor And Delivery
The effect of zonisamide on labor and delivery in humans is not known.
Use in Nursing Mothers
It is not known whether zonisamide is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from zonisamide, a decision should be made whether to discontinue nursing or to discontinue drug, taking into account the importance of the drug to the mother. Zonisamide should be used in nursing mothers only if the benefits outweigh the risks.
Pediatric Use
The safety and effectiveness of zonisamide in children under age 16 have not been established. Cases of oligohidrosis and hyperpyrexia have been reported (see subsection).
Geriatric Use
Single dose pharmacokinetic parameters are similar in elderly and young healthy volunteers (see subsection). Clinical studies of zonisamide did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
What are the side effects of Zonisamide?
The most commonly observed adverse events associated with the use of zonisamide in controlled clinical trials that were not seen at an equivalent frequency among placebo-treated patients were somnolence, anorexia, dizziness, headache, nausea, and agitation/irritability.
In controlled clinical trials, 12% of patients receiving zonisamide as adjunctive therapy discontinued due to an adverse event compared to 6% receiving placebo. Approximately 21% of the 1,336 patients with epilepsy who received zonisamide in clinical studies discontinued treatment because of an adverse event. The adverse events most commonly associated with discontinuation were somnolence, fatigue and/or ataxia (6%), anorexia (3%), difficulty concentrating (2%), difficulty with memory, mental slowing, nausea/vomiting (2%), and weight loss (1%). Many of these adverse events were dose-related (see and).
Adverse Event Incidence in Controlled Clinical Trials
Table 4 lists treatment-emergent adverse events that occurred in at least 2% of patients treated with zonisamide in controlled clinical trials that were numerically more common in the zonisamide group. In these studies, either zonisamide or placebo was added to the patient's current AED therapy. Adverse events were usually mild or moderate in intensity.
The prescriber should be aware that these figures, obtained when zonisamide was added to concurrent AED therapy, cannot be used to predict the frequency of adverse events in the course of usual medical practice when patient characteristics and other factors may differ from those prevailing during clinical studies. Similarly, the cited frequencies cannot be directly compared with figures obtained from other clinical investigations involving different treatments, uses, or investigators. An inspection of these frequencies, however, does provide the prescriber with one basis by which to estimate the relative contribution of drug and non-drug factors to the adverse event incidences in the population studied.
Other Adverse Events Observed During Clinical Trials
Zonisamide has been administered to 1,598 individuals during all clinical trials, only some of which were placebo-controlled. During these trials, all events were recorded by the investigators using their own terms. To provide a useful estimate of the proportion of individuals having adverse events, similar events have been grouped into a smaller number of standardized categories using a modified COSTART dictionary. The frequencies represent the proportion of the 1,598 individuals exposed to zonisamide who experienced an event on at least one occasion. All events are included except those already listed in the previous table or discussed in or , trivial events, those too general to be informative, and those not reasonably associated with zonisamide.
Events are further classified within each category and listed in order of decreasing frequency as follows: occurring in at least 1:100 patient; occurring in 1:100 to 1:1000 patients; occurring in fewer than 1:1000 patients.
Body as a Whole: Accidental injury, asthenia. Chest pain, flank pain, malaise, allergic reaction, face edema, neck rigidity. Lupus erythematosus.
Cardiovascular: Palpitation, tachycardia, vascular insufficiency, hypotension, hypertension, thrombophlebitis, syncope, bradycardia. Atrial fibrillation, heart failure, pulmonary embolus, ventricular extrasystoles.
Digestive: Vomiting. Flatulence, gingivitis, gum hyperplasia, gastritis, gastroenteritis, stomatitis, cholelithiasis, glossitis, melena, rectal hemorrhage, ulcerative stomatitis, gastro-duodenal ulcer, dysphagia, gum hemorrhage. Cholangitis, hematemesis, cholecystitis, cholestatic jaundice, colitis, duodenitis, esophagitis, fecal incontinence, mouth ulceration.
Hematologic and Lymphatic: Leukopenia, anemia, immunodeficiency, lymphadenopathy. Thrombocytopenia, microcytic anemia, petechia.
Metabolic and Nutritional: Peripheral edema, weight gain, edema, thirst, dehydration. Hypoglycemia, hyponatremia, lactic dehydrogenase increased, SGOT increased, SGPT increased.
Musculoskeletal: Leg cramps, myalgia, myasthenia, arthralgia, arthritis.
Nervous System: Tremor, convulsion, abnormal gait, hyperesthesia, incoordination. Hypertonia, twitching, abnormal dreams, vertigo, libido decreased, neuropathy, hyperkinesia, movement disorder, dysarthria, cerebrovascular accident, hypotonia, peripheral neuritis, parathesia, reflexes increased. Circumoral paresthesia, dyskinesia, dystonia, encephalopathy, facial paralysis, hypokinesia, hyperesthesia, myoclonus, oculogyric crisis.
Behavioral Abnormalities –Non-Psychosis-Related: Euphoria.
Respiratory: Pharyngitis, cough increased. Dyspnea. Apnea, hemoptysis.
Skin and Appendages:
Pruritus. Maculopapular rash, acne, alopecia, dry skin, sweating, eczema, urticaria, hirsutism, pustular rash, vesiculobullous rash.
Special Senses: Amblyopia, tinnitus. Conjunctivitis, parosmia, deafness, visual field defect, glaucoma. Photophobia, iritis.
Urogenital: Urinary frequency, dysuria, urinary incontinence, hematuria, impotence, urinary retention, urinary urgency, amenorrhea, polyuria, nocturia. Albuminuria, enuresis, bladder pain, bladder calculus, gynecomastia, mastitis, menorrhagia.
What should I look out for while using Zonisamide?
Zonisamide capsules are contraindicated in patients who have demonstrated hypersensitivity to sulfonamides or zonisamide.
Potentially Fatal Reactions to Sulfonamides: Fatalities have occurred, although rarely, as a result of severe reactions to sulfonamides (zonisamide is a sulfonamide) including Stevens-Johnson syndrome, toxic epidermal necrolysis, fulminant hepatic necrosis, agranulocytosis, aplastic anemia, and other blood dyscrasias. Such reactions may occur when a sulfonamide is readministered irrespective of the route of administration. If signs of hypersensitivity or other serious reactions occur, discontinue zonisamide immediately. Specific experience with sulfonamide-type adverse reaction to zonisamide is described below.
What might happen if I take too much Zonisamide?
How should I store and handle Zonisamide?
Store at controlled room temperature 20° to 25°C (68° to 77°F) [see USP] .Zonisamide Capsules, 25 mg are white to off-white powder filled in size '4' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '402' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-402-30Bottles of 60 NDC 55111-402-60Bottles of 100 NDC 55111-402-01Bottles of 500 NDC 55111-402-05Unit-dose packages of 100 (10×10). NDC 55111-402-78Zonisamide Capsules, 50 mg are white to off-white powder filled in size '3' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '403' on body in black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-403-30Bottles of 60 NDC 55111-403-60Bottles of 100 NDC 55111-403-01Bottles of 500 NDC 55111-403-05Unit-dose packages of 100 (10×10). NDC 55111-403-78Zonisamide Capsules, 100 mg are white to off-white, powder filled in size '1' hard gelatin capsules with opaque flesh colored cap and opaque white colored body imprinted 'RDY' on cap and '288' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-288-30Bottles of 60 NDC 55111-288-60Bottles of 100 NDC 55111-288-01Bottles of 500 NDC 55111-288-05Unit-dose packages of 100 (10×10). NDC 55111-288-78Zonisamide Capsules, 25 mg are white to off-white powder filled in size '4' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '402' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-402-30Bottles of 60 NDC 55111-402-60Bottles of 100 NDC 55111-402-01Bottles of 500 NDC 55111-402-05Unit-dose packages of 100 (10×10). NDC 55111-402-78Zonisamide Capsules, 50 mg are white to off-white powder filled in size '3' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '403' on body in black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-403-30Bottles of 60 NDC 55111-403-60Bottles of 100 NDC 55111-403-01Bottles of 500 NDC 55111-403-05Unit-dose packages of 100 (10×10). NDC 55111-403-78Zonisamide Capsules, 100 mg are white to off-white, powder filled in size '1' hard gelatin capsules with opaque flesh colored cap and opaque white colored body imprinted 'RDY' on cap and '288' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-288-30Bottles of 60 NDC 55111-288-60Bottles of 100 NDC 55111-288-01Bottles of 500 NDC 55111-288-05Unit-dose packages of 100 (10×10). NDC 55111-288-78Zonisamide Capsules, 25 mg are white to off-white powder filled in size '4' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '402' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-402-30Bottles of 60 NDC 55111-402-60Bottles of 100 NDC 55111-402-01Bottles of 500 NDC 55111-402-05Unit-dose packages of 100 (10×10). NDC 55111-402-78Zonisamide Capsules, 50 mg are white to off-white powder filled in size '3' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '403' on body in black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-403-30Bottles of 60 NDC 55111-403-60Bottles of 100 NDC 55111-403-01Bottles of 500 NDC 55111-403-05Unit-dose packages of 100 (10×10). NDC 55111-403-78Zonisamide Capsules, 100 mg are white to off-white, powder filled in size '1' hard gelatin capsules with opaque flesh colored cap and opaque white colored body imprinted 'RDY' on cap and '288' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-288-30Bottles of 60 NDC 55111-288-60Bottles of 100 NDC 55111-288-01Bottles of 500 NDC 55111-288-05Unit-dose packages of 100 (10×10). NDC 55111-288-78Zonisamide Capsules, 25 mg are white to off-white powder filled in size '4' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '402' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-402-30Bottles of 60 NDC 55111-402-60Bottles of 100 NDC 55111-402-01Bottles of 500 NDC 55111-402-05Unit-dose packages of 100 (10×10). NDC 55111-402-78Zonisamide Capsules, 50 mg are white to off-white powder filled in size '3' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '403' on body in black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-403-30Bottles of 60 NDC 55111-403-60Bottles of 100 NDC 55111-403-01Bottles of 500 NDC 55111-403-05Unit-dose packages of 100 (10×10). NDC 55111-403-78Zonisamide Capsules, 100 mg are white to off-white, powder filled in size '1' hard gelatin capsules with opaque flesh colored cap and opaque white colored body imprinted 'RDY' on cap and '288' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-288-30Bottles of 60 NDC 55111-288-60Bottles of 100 NDC 55111-288-01Bottles of 500 NDC 55111-288-05Unit-dose packages of 100 (10×10). NDC 55111-288-78Zonisamide Capsules, 25 mg are white to off-white powder filled in size '4' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '402' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-402-30Bottles of 60 NDC 55111-402-60Bottles of 100 NDC 55111-402-01Bottles of 500 NDC 55111-402-05Unit-dose packages of 100 (10×10). NDC 55111-402-78Zonisamide Capsules, 50 mg are white to off-white powder filled in size '3' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '403' on body in black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-403-30Bottles of 60 NDC 55111-403-60Bottles of 100 NDC 55111-403-01Bottles of 500 NDC 55111-403-05Unit-dose packages of 100 (10×10). NDC 55111-403-78Zonisamide Capsules, 100 mg are white to off-white, powder filled in size '1' hard gelatin capsules with opaque flesh colored cap and opaque white colored body imprinted 'RDY' on cap and '288' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-288-30Bottles of 60 NDC 55111-288-60Bottles of 100 NDC 55111-288-01Bottles of 500 NDC 55111-288-05Unit-dose packages of 100 (10×10). NDC 55111-288-78Zonisamide Capsules, 25 mg are white to off-white powder filled in size '4' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '402' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-402-30Bottles of 60 NDC 55111-402-60Bottles of 100 NDC 55111-402-01Bottles of 500 NDC 55111-402-05Unit-dose packages of 100 (10×10). NDC 55111-402-78Zonisamide Capsules, 50 mg are white to off-white powder filled in size '3' hard gelatin capsules with white opaque colored cap and white opaque colored body imprinted 'RDY' on cap and '403' on body in black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-403-30Bottles of 60 NDC 55111-403-60Bottles of 100 NDC 55111-403-01Bottles of 500 NDC 55111-403-05Unit-dose packages of 100 (10×10). NDC 55111-403-78Zonisamide Capsules, 100 mg are white to off-white, powder filled in size '1' hard gelatin capsules with opaque flesh colored cap and opaque white colored body imprinted 'RDY' on cap and '288' on body with black ink. They are supplied in bottles of 30's, 60's, 100's, 500's and unit-dose packages of 100 (10×10).Bottles of 30 NDC 55111-288-30Bottles of 60 NDC 55111-288-60Bottles of 100 NDC 55111-288-01Bottles of 500 NDC 55111-288-05Unit-dose packages of 100 (10×10). NDC 55111-288-78
Clinical Information
Chemical Structure
No Image foundClinical Pharmacology
The precise mechanism(s) by which zonisamide exerts its antiseizure effect is unknown. Zonisamide demonstrated anticonvulsant activity in several experimental models. In animals, zonisamide was effective against tonic extension seizures induced by maximal electroshock but ineffective against clonic seizures induced by subcutaneous pentylenetetrazol. Zonisamide raised the threshold for generalized seizures in the kindled rat model and reduced the duration of cortical focal seizures induced by electrical stimulation of the visual cortex in cats. Furthermore, zonisamide suppressed both interictal spikes and the secondarily generalized seizures produced by cortical application of tungstic acid gel in rats or by cortical freezing in cats. The relevance of these models to human epilepsy is unknown.
Zonisamide may produce these effects through action at sodium and calcium channels. pharmacological studies suggest that zonisamide blocks sodium channels and reduces voltage-dependent, transient inward currents (T-type Ca currents), consequently stabilizing neuronal membranes and suppressing neuronal hypersynchronization. binding studies have demonstrated that zonisamide binds to the GABA/benzodiazepine receptor ionophore complex in an allosteric fashion which does not produce changes in chloride flux. Other studies have demonstrated that zonisamide (10–30 µg/mL) suppresses synaptically-driven electrical activity without affecting postsynaptic GABA or glutamate responses (cultured mouse spinal cord neurons) or neuronal or glial uptake of [H]-GABA (rat hippocampal slices). Thus, zonisamide does not appear to potentiate the synaptic activity of GABA. microdialysis studies demonstrated that zonisamide facilitates both dopaminergic and serotonergic neurotransmission. Zonisamide also has weak carbonic anhydrase inhibiting activity, but this pharmacologic effect is not thought to be a major contributing factor in the antiseizure activity of zonisamide.
Non-Clinical Toxicology
Zonisamide capsules are contraindicated in patients who have demonstrated hypersensitivity to sulfonamides or zonisamide.Potentially Fatal Reactions to Sulfonamides: Fatalities have occurred, although rarely, as a result of severe reactions to sulfonamides (zonisamide is a sulfonamide) including Stevens-Johnson syndrome, toxic epidermal necrolysis, fulminant hepatic necrosis, agranulocytosis, aplastic anemia, and other blood dyscrasias. Such reactions may occur when a sulfonamide is readministered irrespective of the route of administration. If signs of hypersensitivity or other serious reactions occur, discontinue zonisamide immediately. Specific experience with sulfonamide-type adverse reaction to zonisamide is described below.
Somnolence is commonly reported, especially at higher doses of zonisamide (see subsection). Zonisamide is metabolized by the liver and eliminated by the kidneys; caution should therefore be exercised when administering zonisamide to patients with hepatic and renal dysfunction (see subsection).
The most commonly observed adverse events associated with the use of zonisamide in controlled clinical trials that were not seen at an equivalent frequency among placebo-treated patients were somnolence, anorexia, dizziness, headache, nausea, and agitation/irritability.
In controlled clinical trials, 12% of patients receiving zonisamide as adjunctive therapy discontinued due to an adverse event compared to 6% receiving placebo. Approximately 21% of the 1,336 patients with epilepsy who received zonisamide in clinical studies discontinued treatment because of an adverse event. The adverse events most commonly associated with discontinuation were somnolence, fatigue and/or ataxia (6%), anorexia (3%), difficulty concentrating (2%), difficulty with memory, mental slowing, nausea/vomiting (2%), and weight loss (1%). Many of these adverse events were dose-related (see and).
Reference
This information is obtained from the National Institute of Health's Standard Packaging Label drug database.
"https://dailymed.nlm.nih.gov/dailymed/"
While we update our database periodically, we cannot guarantee it is always updated to the latest version.
Review
Professional
Clonazepam Description Each single-scored tablet, for oral administration, contains 0.5 mg, 1 mg, or 2 mg Clonazepam, USP, a benzodiazepine. Each tablet also contains corn starch, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and povidone. Clonazepam tablets USP 0.5 mg contain Yellow D&C No. 10 Aluminum Lake. Clonazepam tablets USP 1 mg contain Yellow D&C No. 10 Aluminum Lake, as well as FD&C Blue No. 1 Aluminum Lake. Chemically, Clonazepam, USP is 5-(o-chlorophenyl)-1,3-dihydro-7-nitro-2H-1,4-benzodiazepin-2-one. It is a light yellow crystalline powder. It has the following structural formula: C15H10ClN3O3 M.W. 315.72Tips
Tips
Interactions
Interactions
A total of 440 drugs (1549 brand and generic names) are known to interact with Imbruvica (ibrutinib). 228 major drug interactions (854 brand and generic names) 210 moderate drug interactions (691 brand and generic names) 2 minor drug interactions (4 brand and generic names) Show all medications in the database that may interact with Imbruvica (ibrutinib).